• 제목/요약/키워드: Tower Structure

검색결과 432건 처리시간 0.021초

국내 건설현장 타워크레인 안전진단 관리시스템 모델에 관한 연구 (The study on the safety inspection system model of the tower crane a construction site in Korea)

  • 윤인수;서장훈;강경식
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2006년도 추계공동학술대회
    • /
    • pp.499-507
    • /
    • 2006
  • The tower cranes are widely used in very useful construction machine the sites of constructing high-structure and have a structural sensitiveness. Therefore, the accidents have often happened due to the deficiency of laborer's understanding md lack of safety of structure. Till now, as we have research and studied above, we can properly protect accidents by construction equipments particularly crane as well as most disasters which occur frequently in construction site. The goal of this study is the safety inspection model of the tower crane a construction site, which preventible the collapse accident of tower crane which is constructed by using the correcting frame. In order to accomplish the goal of this study, the field survey, the reference investigation and the structure analysis were performed for the collapse accident of tower nine using the correcting data. This study will be proposed a build-up solutions about operating and release of safety constructions and researched about software safety estimation. Also, preventing safety problems of Tower Crane Construction site as applying safety estimation program and laws and regulations. As a result, The real time control of tower crane inspection system is implemented by to illustrate the application of the adopted optimal design model.

  • PDF

국내 건설현장 타워크레인 안전진단 관리시스템 모델에 관한 연구 (A Study on the Safety Inspection System Model of The Tower Crane a Construction Site in Korea)

  • 윤인수;강경식
    • 대한안전경영과학회지
    • /
    • 제9권1호
    • /
    • pp.37-49
    • /
    • 2007
  • The tower cranes are widely used in very useful construction machine the sites of constructing high-structure and have a structural sensitiveness. Therefore, the accidents have often happened due to the deficiency of laborer's understanding and lack of safety of structure. Till now, as we have research and studied above, we can properly protect accidents by construction equipments particularly crane as well as most disasters which occur frequently in construction site. The goal of this study is the safety inspection model of the tower crane a construction site, which preventible the collapse accident of tower crane which is constructed by using the correcting frame. In order to accomplish the goal of this study, the field survey, the reference investigation and the structure analysis were performed for the collapse accident of tower crane using the correcting data. This study will be proposed a build-up solutions about operating and release of safety constructions and researched about software safety estimation. Also, preventing safety problems of Tower Crane Construction site as applying safety estimation program and laws and regulations. As a result, The real time control of tower crane inspection system is implemented by to illustrate the application of the adopted optimal design model.

철탑 사각골조의 풍력 계수 산정에 관한 실험적 연구 (An Experimental Study on the Estimate of Wind Force Coefficient of Transmission Tower Rectangular Frame)

  • 신구용;임재섭;황규석;길용식
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.73-81
    • /
    • 2011
  • 골조로 구성된 철탑의 풍력계수는 구성부재의 단면형상, 충실율 등에 의해 변하며 풍향각에 의해서도 여러 가지 특성이 나타난다. 본 연구에서는 이러한 철탑골조에 대하여 충실율과 풍향각을 변화시키면서 풍동실험을 수행하여 철탑골조에 작용하는 풍력특성을 평가한다. 실험은 먼저 철탑을 구성하고 있는 부재의 특성을 파악하기 위한 기본형상 부재에 대한 실험을 수행하였다. 그리고 철탑 사각골조는 2D와 3D 형태로 기본형에 철탑부재를 추가하는 방법과, 부재크기를 증가시키는 방법으로 충실율을 변화시킨 모형을 제작하였으며, 2D 형상은 풍향각을 0도에서 90도까지, 3D 형상은 풍향각을 0도에서 45도까지 변화시키면서 풍동실험을 수행하였다. 본 연구의 결과인 철탑 사각골조의 풍력계수 특성은 향후 철탑 풍하중 설계의 기초자료로 사용될 것이다.

Analysis on Tower Crane Selection in Precast Concretes Structures and its Connection with Precast Rate

  • Guo, Jingjing;Fu, Yan;Wang, Kang;Peng, Zhenyu
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.192-200
    • /
    • 2017
  • With the acceleration of construction industrialization, the buildings that China has adopted the construction of industrialization technology are increasing day by day, and Precast Concrete (PC) Structure technology is one of the main technologies of construction industrialization. Compared with the traditional cast-in-place concrete structure, PC structure is more conducive to shorten the construction period, reduce the number of construction workers and the site construction waste. Nevertheless, PC structure improves the requirements of hoisting machinery in the construction site, and the lay-out and selection of hoisting machinery become an important factor influencing the construction cost. The paper regards the typical tower crane in China as the research object, and establishes the time optimization model for the lifting scheme. The influence of the different precast rate on the selection of the tower crane is analyzed. This paper obtains the time variation of the tower crane under different precast rate, provides a theoretical basis for the design of precast concrete structures under the influence of assembly construction, and lays the foundation for the selection of tower crane under the precast rate.

  • PDF

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.

The Structural Design of "China Zun" Tower, Beijing

  • Liu, Peng;Cheng, Yu;Zhu, Yan-Song
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.213-220
    • /
    • 2016
  • The "China Zun" tower in Beijing will rise to 528 meters in height and will be the tallest building in Beijing once built. Inspired by an ancient Chinese vessel, the "Zun", the plan dimensions reduce gradually from the bottom of the tower to the waist and then expand again as it rises to form an aesthetically beautiful and unique geometry. To satisfy the structural requirement for seismic and wind resistance, the structure is a dual system composed of a perimeter mega structure made of composite mega columns, mega braces, and belt trusses, and a reinforced-concrete core with steel plate-embedded walls. Advanced parametric design technology is applied to find the most efficient outer-perimeter structure system. The seismic design basically follows a mixed empirical and performance-based methodology that was verified by a shaking table test and other specimen lab tests. The tower is now half-way through its construction.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

케이블 지지된 풍력발전기 타워 구조 모델의 진동해석 (Vibration Analysis of a Cable Supported Wind Turbine Tower Model)

  • 김석현;박무열;최승훈
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

해상풍력발전시스템 타워서비스리프트 설계 및 구조해석 (Design and Structure Analysis of a Tower Service Lift for Offshore Wind Power System)

  • 최영도;손성우;장호철;최낙준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.101-108
    • /
    • 2012
  • 본 연구 결과는 해상풍력발전시스템 타워 내부에 설치하는 서비스리프트의 설계 및 구조해석에 대한 내용이며, 공학적 설계법 및 수치해석에 의한 구조해석을 통하여 서비스리프트의 안정성 및 신뢰성을 확인하였다. 설계의 주된 내용은 설계 허용한계 이내에서 만족스러운 성능으로 지상으로부터 타워상부의 해상풍력터빈 너셀까지 작업자와 수리보수용 장비를 안전하게 수송할 수 있는 충분한 능력을 확보하는 것이다. 구조해석을 통하여 서비스리프트 캐빈 및 안전장치의 총변형량과 등가응력에 대해서 검토하여 설계 시 적용한 안전율의 타당성을 검토하였다.

Comparative Analysis of Lifting Loads of Tower Cranes by Core Structure Construction Methods

  • Choi, Yong Seok;Kim, Taehoon;Kim, Sangdae
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.301-306
    • /
    • 2020
  • In tall building construction, the appropriate control of lifting loads on tower cranes is critical in terms of the construction duration of structural works. The adoption of efficient construction methods can be the most effective way of minimizing the inputs of tower cranes and making a lifting plan and management easier. Based on actual data from a tall building project, this study comparatively analyzes lifting loads of tower cranes by the core structure preceding construction method (CSPCM) and the core structure succeeding construction method (CSSCM). The results revealed that the CSSCM could reduce up to about 56.3% of lifting loads for core works and significantly enhance lifting efficiency compared with the CSPCM. Consequently, this enabled a substantial reduction in the construction duration of structural works. This study provides a practical reference to assist engineers and managers in applying efficient construction methods and lifting equipment operation in tall building projects.