• Title/Summary/Keyword: Tissue regeneration.

Search Result 1,323, Processing Time 0.029 seconds

Fluoxetine and Sertraline Attenuate Postischemic Brain Injury in Mice

  • Shin, Tae-Kyeong;Kang, Mi-Sun;Lee, Ho-Youn;Seo, Moo-Sang;Kim, Si-Geun;Kim, Chi-Dae;Lee, Won-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 2009
  • This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine- and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1 ${\alpha}$ (HIF-1 ${\alpha}$) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1 ${\alpha}$ proteins expression, thereby providing a benefit in therapy of cerebral ischemia.

Gene Transfer of Cu/ZnSOD to Cerebral Vessels Prevents Subarachnoid Hemorrhage-induced Cerebral Vasospasm

  • Yun, Mi-Ran;Kim, Dong-Eun;Heo, Hye-Jin;Park, Ji-Young;Lee, Ji-Young;Bae, Sun-Sik;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.327-332
    • /
    • 2005
  • The preventive effects of gene transfer of human copper/zinc superoxide dismutase (Cu/ZnSOD) on the development of cerebral vasospasm after subarachnoid hemorrhage (SAH) were examined usin a rat model of SAH. An experimental SAH was produced by injecting autologous arterial blood twice into the cisterna magna, and the changes in the diameter of the middle cerebral artery (MCA) were measured. Rats subjected to SAH exhibited a decreased diameter with an increased wall thickness of MCA that were significantly ameliorated by pretreatment with diphenyleneiodonium (DPI, $10{\mu}M$), an inhibitor of NAD(P)H oxidase. Furthermore, application of recombinant adenovirus ($100{\mu}l$ of $1{\times}10^{10}$ pfu/ml, intracisternally), which encodes human Cu/ZnSOD, 3 days before SAH prevented the development of SAH-induced vasospasm. Our findings demonstrate that SAH-induced cerebral vasospasm is closely related with NAD(P)H oxidase-derived reactive oxygen species, and these alterations can be prevented by the recombinant adenovirus-mediated transfer of human Cu/ZnSOD gene to the cerebral vasculature.

Comparative study on tissue responses of 3 resorbable membranes in rats (흡수성 차폐막의 조직반응에 관한 비교연구)

  • Hong, Seung-Bum;Kwon, Young-Hyuk;Lee, Man-Sup;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.475-488
    • /
    • 2002
  • The purpose of this study is to evaluate histologically the resorption and tissue response of various resorbable collagen membranes used for guided tissue regeneration and guided bone regeneration, using a subcutaneous model on the dorsal surface of the rat. In this study, 10 Sprague-Dawley male rats (mean BW 150gm) were used and the commercially available materials included acellular dermal matrix allograft, porcine collagen membrane, freeze-dried bovine dura mater. Animals were sacrificed at 2,6 and 8 weeks after implantation of various resorbable collagen membranes. Specimens were prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows: 1. Resorption : Inner portion of porcine collagen membrane was resorbed a lot at 6 weeks, but its function was being kept for infiltration of another tissues were not observed. Freeze-dried bovine dura mater and acellular dermal allograft were rarely resorbed and kept their structure of outer portion for 8 weeks. 2. Inflammatory reactions : Inflammatory reaction was so mild and foreign body reaction didn't happen in all of resorbable collagen membranes, which showed their biocompatibility. 3. In all of resorbable collagen membranes, multinuclcated giant cells by foreign body reactions were not observed. Barrier membranes have to maintain their function for 4-6 weeks in guided tissue regeneration and at least 8 weeks in guided bone regeneration. According to present study, we can find all of the resorbable collagen membranes kept their function and structure for 8 weeks and were rarely resorbed. Foreign body reaction didn't happen and inflammatory reaction was so mild histologically. Therefore, all of collagen membranes used in this experiment were considered proper resorbable membranes for guided tissue regeneration and guided bone regeneration.

Periodontal Wound Healing of the Experimental Subepithelial Connective Tissue Graft in Dogs (성견의 실험적 상피하 결합조직 이식시의 치주조직의 치유)

  • Jung, Hyun-Chul;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kyi;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.379-394
    • /
    • 1997
  • Several methods have been used for regeneration of tissue lost by periodontal disease. Subepithelial connective tissue graft technique, one of the technniques of mucogingival surgery, is used for the regeneration in esthetic problems such as recession, and denuded root coverage. This study is performed to evaluate the healing process and the regeneration and reattachment of periodontal tissue, including the reconstruction of junctional epithelium, and connective tissue. Alveolar defects in five adult dogs were treated with periodontal surgery and were attained by removing the marginal alveolar bone by $4{\time}3mm$ from CEJ in the labial side of incisors, and root surfaces were planed. The experimental sites were divided into two groups as follows. 1. root planing alone(control group) 2. with connective tissue graft (Experimental Group) In the two groups flaps were positioned and sutured tightly, the healing processes were observed and were histologically compared with each other after 2days, 4days, 1week, 2weeks, 4weeks. The results were obtained as follows : 1. In the two groups blood clots were observed as early as 2 and 4 days, and were resorbed at 1 week. 2. In the two groups moderate inflammation was observed as early as 2 and 4 days, decreased at 1 and 2 weeks, and disappeared at 4 weeks. 3. Junctional Epithelium migration was more significant in the control group, and was restrained by graft materials in the experimental group. 4. Features of connective tissue fiber attachment partially showed the parallel pattern in the two groups from 2 weeks, and entirely from 4weeks. 5. Anastomosis, between graft and connective tissue, appeared from 4 days in the experimental group and the border between them was not discriminated at 4weeks.

  • PDF

A simple technique for repositioning of the mandible by a surgical guide prepared using a three-dimensional model after segmental mandibulectomy

  • Funayama, Akinori;Kojima, Taku;Yoshizawa, Michiko;Mikami, Toshihiko;Kanemaru, Shohei;Niimi, Kanae;Oda, Yohei;Kato, Yusuke;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.16.1-16.6
    • /
    • 2017
  • Background: Mandibular reconstruction is performed after segmental mandibulectomy, and precise repositioning of the condylar head in the temporomandibular fossa is essential for maintaining preoperative occlusion. Methods: In cases without involvement of soft tissue around the mandibular bone, the autopolymer resin in a soft state is pressed against the lower border of the mandible and buccal and lingual sides of the 3D model on the excised side. After hardening, it is shaved with a carbide bar to make the proximal and distal parts parallel to the resected surface in order to determine the direction of mandibular resection. On the other hand, in cases that require resection of soft tissue around the mandible such as cases of a malignant tumor, right and left mandibular rami of the 3D model are connected with the autopolymer resin to keep the preoperative position between proximal and distal segments before surgical simulation. The device is made to fit the lower border of the anterior mandible and the posterior border of the mandibular ramus. The device has a U-shaped handle so that adaptation of the device will not interfere with the soft tissue to be removed and has holes to be fixed on the mandible with screws. Results: We successfully performed the planned accurate segmental mandibulectomy and the precise repositioning of the condylar head by the device. Conclusions: The present technique and device that we developed proved to be simple and useful for restoring the preoperative condylar head positioning in the temporomandibular fossa and the precise resection of the mandible.

Implications of specific gene expression patterns in enamel knot in tooth development

  • Kim, Tae-Young;Neupane, Sanjiv;Aryal, Yam Prasad;Lee, Eui-Seon;Kim, Ji-Youn;Suh, Jo-Young;Lee, Youngkyun;Sohn, Wern-Joo;An, Seo-Young;Ha, Jung-Hong;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2020
  • Enamel knot (EK)-a signaling center-refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26, Fat4, Meis2, Sln, and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.

Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect (골결손부에서 흡수성 차폐막 단독 또는 이종골을 동반하여 시행한 조직유도재생술)

  • Lee, Won-Jin;Kim, Won-Gi;Ahn, Yong-Bum;Chang, Moon-Taek;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.737-744
    • /
    • 2008
  • Purpose: In advanced case of periodontitis, surgical treatment without bone contouring may result in residual pockets inaccessible to proper cleaning during post-treatment maintenance. This problem can be avoided or reduced by applying guided tissue regeneration. Materials and Methods: All of 3 patients had deep periodontal pocket depth and bleeding on probing, and radiograph revealed osseous defect, so we planned guided tissue regeneration using resorbable membrane with or without xenograft. Result: 6 months later, periodontal pocket depth and bleeding on probing was improved and gingiva was stable. Conclusion: Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect is predictable.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

Matrix Metalloproteinase Inhibitors Attenuate Neuroinflammation Following Focal Cerebral Ischemia in Mice

  • Park, Cheol-Hong;Shin, Tae-Kyeong;Lee, Ho-Youn;Kim, So-Jung;Lee, Won-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.2
    • /
    • pp.115-122
    • /
    • 2011
  • The aim of this study was to investigate whether matrix metalloproteinase (MMP) inhibitors attenuate neuroinflammation in an ischemic brain following photothrombotic cortical ischemia in mice. Male C57BL/6 mice were anesthetized, and Rose Bengal was systemically administered. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold white light. MMP inhibitors, such as doxycycline, minocycline, and batimastat, significantly reduced the cerebral infarct size, and the expressions of monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and indoleamine 2,3-dioxygenase (IDO). However, they had no effect on the expressions of heme oxygenase-1 and neuroglobin in the ischemic cortex. These results suggest that MMP inhibitors attenuate ischemic brain injury by decreasing the expression levels of MCP-1, TNF-${\alpha}$, and IDO, thereby providing a therapeutic benefit against cerebral ischemia.