DOI QR코드

DOI QR Code

Implications of specific gene expression patterns in enamel knot in tooth development

  • Kim, Tae-Young (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Neupane, Sanjiv (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Aryal, Yam Prasad (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Lee, Eui-Seon (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Kim, Ji-Youn (Department of Dental Hygiene, College of Health Science, Gachon University) ;
  • Suh, Jo-Young (Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University) ;
  • Lee, Youngkyun (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Sohn, Wern-Joo (Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University) ;
  • An, Seo-Young (Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University) ;
  • Ha, Jung-Hong (Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • An, Chang-Hyeon (Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University) ;
  • Kim, Jae-Young (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University)
  • Received : 2020.02.20
  • Accepted : 2020.03.18
  • Published : 2020.03.30

Abstract

Enamel knot (EK)-a signaling center-refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26, Fat4, Meis2, Sln, and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.

Keywords

References

  1. Calamari ZT, Hu JK, Klein OD. Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. Bioessays 2018;40:e1800140. doi: 10.1002/bies.201800140.
  2. Zerina J, Smith MM. Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms. Biol Rev Camb Philos Soc 2005;80:303-45. doi: 10.1017/s1464793104006682.
  3. Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development 2012;139:3487-97. doi: 10.1242/dev.085084.
  4. Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol 2015;115:157-86. doi: 10.1016/bs.ctdb.2015.07.006.
  5. Harjunmaa E, Kallonen A, Voutilainen M, Hamalainen K, Mikkola ML, Jernvall J. On the difficulty of increasing dental complexity. Nature 2012;483:324-7. doi: 10.1038/nature10876.
  6. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000;92:19-29. doi: 10.1016/s0925-4773(99)00322-6.
  7. Nakatomi M, Hovorakova M, Gritli-Linde A, Blair HJ, MacArthur K, Peterka M, Lesot H, Peterkova R, Ruiz-Perez VL, Goodship JA, Peters H. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res 2013;92:222-8. doi: 10.1177/0022034512471826.
  8. Cho SW, Lee HA, Cai J, Lee MJ, Kim JY, Ohshima H, Jung HS. The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation 2007;75:441-51. doi: 10.1111/j.1432-0436.2006.00153.x.
  9. Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 2001;15:14-8. doi: 10.1177/08959374010150010401.
  10. Han X, Yoshizaki K, Miyazaki K, Arai C, Funada K, Yuta T, Tian T, Chiba Y, Saito K, Iwamoto T, Yamada A, Takahashi I, Fukumoto S. The transcription factor NKX2-3 mediates p21 expression and ectodysplasin-A signaling in the enamel knot for cusp formation in tooth development. J Biol Chem 2018;293:14572-84. doi: 10.1074/jbc.RA118.003373.
  11. Loes S, Luukko K, Kvinnsland IH, Kettunen P. Slit1 is specifically expressed in the primary and secondary enamel knots during molar tooth cusp formation. Mech Dev 2001;107:155-7. doi: 10.1016/s0925-4773(01)00454-3.
  12. Alappat S, Zhang ZY, Chen YP. Msx homeobox gene family and craniofacial development. Cell Res 2003;13:429-42. doi: 10.1038/sj.cr.7290185.
  13. Neupane S, Sohn WJ, Gwon GJ, Kim KR, Lee S, An CH, Suh JY, Shin HI, Yamamoto H, Cho SW, Lee Y, Kim JY. The role of APCDD1 in epithelial rearrangement in tooth morphogenesis. Histochem Cell Biol 2015;144:377-87. doi: 10.1007/s00418-015-1345-z.
  14. Shi D, Usami F, Komatsu K, Oka S, Abe T, Uemura T, Fujimori T. Dynamics of planar cell polarity protein Vangl2 in the mouse oviduct epithelium. Mech Dev 2016;141:78-89. doi: 10.1016/j.mod.2016.05.002.
  15. DeLaughter DM, Christodoulou DC, Robinson JY, Seidman CE, Baldwin HS, Seidman JG, Barnett JV. Spatial transcriptional profile of the chick and mouse endocardial cushions identify novel regulators of endocardial EMT in vitro. J Mol Cell Cardiol 2013;59:196-204. doi: 10.1016/j.yjmcc.2013.03.016.
  16. Shimura D, Kusakari Y, Sasano T, Nakashima Y, Nakai G, Jiao Q, Jin M, Yokota T, Ishikawa Y, Nakano A, Goda N, Minamisawa S. Heterozygous deletion of sarcolipin maintains normal cardiac function. Am J Physiol Heart Circ Physiol 2016;310:H92-103. doi: 10.1152/ajpheart.00411.2015.
  17. Vaahtokari A, Aberg T, Jernvall J, Keranen S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 1996;54:39-43. doi: 10.1016/0925-4773(95)00459-9.
  18. Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. Wiley Interdiscip Rev Dev Biol 2013;2:165-82. doi: 10.1002/wdev.63.
  19. Nakatomi M, Wang XP, Key D, Lund JJ, Turbe-Doan A, Kist R, Aw A, Chen Y, Maas RL, Peters H. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol 2010;340:438-49. doi: 10.1016/j.ydbio.2010.01.031.
  20. Paine ML, Wang HJ, Luo W, Krebsbach PH, Snead ML. A transgenic animal model resembling amelogenesis imperfecta related to ameloblastin overexpression. J Biol Chem 2003;278:19447-52. doi: 10.1074/jbc.M300445200.
  21. Neupane S, Sohn WJ, Rijal G, Lee YJ, Lee S, Yamamoto H, An CH, Cho SW, Lee Y, Shin HI, Kwon TY, Kim JY. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 2014;358:109-21. doi: 10.1007/s00441-014-1908-7.
  22. Akita K, Francis-West P, Vargesson N. The ectodermal control in chick limb development: Wnt-7a, Shh, Bmp-2 and Bmp-4 expression and the effect of FGF-4 on gene expression. Mech Dev 1996;60:127-37. doi: 10.1016/s0925-4773(96)00606-5.
  23. Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 1999;216:72-88. doi: 10.1002/(SICI)1097-0177(199909)216:1<72::AIDDVDY9>3.0.CO;2-9.
  24. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004;5:499-508. doi: 10.1038/nrg1380.
  25. Jung S, Nah J, Han J, Choi SG, Kim H, Park J, Pyo HK, Jung YK. Dual-specificity phosphatase 26 (DUSP26) stimulates $A{\beta}42$ generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem 2016;137:770-81. doi: 10.1111/jnc.13597.
  26. Yu W, Imoto I, Inoue J, Onda M, Emi M, Inazawa J. A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 2007;26:1178-87. doi: 10.1038/sj.onc.1209899.
  27. Cai J, Feng D, Hu L, Chen H, Yang G, Cai Q, Gao C, Wei D. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/${\beta}$-catenin signalling. Br J Cancer 2015;113:1720-9. doi: 10.1038/bjc.2015.367.
  28. Douglas G, Cho MT, Telegrafi A, Winter S, Carmichael J, Zackai EH, Deardorff MA, Harr M, Williams L, Psychogios A, Erwin AL, Grebe T, Retterer K, Juusola J. De novo missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features. Am J Med Genet A 2018;176:1845-51. doi: 10.1002/ajmg.a.40368.
  29. Morita T, Hussain D, Asahi M, Tsuda T, Kurzydlowski K, Toyoshima C, Maclennan DH. Interaction sites among phospholamban, sarcolipin, and the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Biochem Biophys Res Commun 2008;369:188-94. doi: 10.1016/j.bbrc.2007.11.098.
  30. Gianfrancesco F, Esposito T, Penco S, Maglione V, Liquori CL, Patrosso MC, Zuffardi O, Ciccodicola A, Marchuk DA, Squitieri F. ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations. Neuroscience 2008;155:345-9. doi: 10.1016/j.neuroscience.2008.05.030.
  31. Kettunen P, Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 1998;211:256-68. doi: 10.1002/(SICI)1097-0177(199803)211:3<256::AID-AJA7>3.0.CO;2-G.
  32. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2005;15:301-16. doi: 10.1038/sj.cr.7290299.
  33. Martin GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev 1998;12:1571-86. doi: 10.1101/gad.12.11.1571.
  34. Zeller R, Lopez-Rios J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 2009;10:845-58. doi: 10.1038/nrg2681.
  35. Haro E, Delgado I, Junco M, Yamada Y, Mansouri A, Oberg KC, Ros MA. Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development. PLoS Genet 2014;10:e1004468. doi: 10.1371/journal.pgen.1004468.
  36. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Itoh N, Thesleff I. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 2000;219:322-32. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J.