• Title/Summary/Keyword: Timoshenko Theory

Search Result 251, Processing Time 0.025 seconds

A new simple shear and normal deformations theory for functionally graded beams

  • Bourada, Mohamed;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.409-423
    • /
    • 2015
  • In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (${\varepsilon}_Z{\neq}0$) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Eigenvalue Analysis of Stiffened Plates on Pasternak Foundations (Pasternak지반위에 놓인 보강판의 고유치해석)

  • Lee, Byoung-Koo;Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • This research analyzes eigenvalue analysis of stiffened plates on the Pasternak foundations using the finite clement method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity clement system and 3-nodes finite element system were used for plate and beam elements, respectively. Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundations is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in reference, experimental solutions and solutions obtained by SAP 2000. The natural frequency of stiffened plates on Pasternak foundations were determined according to changes or foundation parameters and dimensions of stiffener.

A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams

  • Zidi, Mohamed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.145-153
    • /
    • 2017
  • In this article, a novel simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) beams is proposed. The beauty of this theory relies on its 2-unknowns displacement field as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton's principle. Analytical solutions for the bending and free vibration analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending and dynamic of FG beams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory results. The results obtained are found to be accurate.

Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory (Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석)

  • 권효찬;박영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF

Dynamic stiffness formulations for harmonic response of infilled frames

  • Bozyigit, Baran;Yesilcea, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.183-191
    • /
    • 2018
  • In this paper, harmonic responses of infilled multi-storey frames are obtained by using a single variable shear deformation theory (SVSDT) and dynamic stiffness formulations. Two different planar frame models are used which are fully infilled and soft storey. The infill walls are modeled by using equivalent diagonal strut approach. Firstly, free vibration analyses of bare frame and infilled frames are performed. The calculated natural frequencies are tabulated with finite element solution results. Then, harmonic response curves (HRCs) of frame models are plotted for different infill wall thickness values. All of the results are presented comparatively with Timoshenko beam theory results to reveal the effectiveness of SVSDT which considers the parabolic shear stress distribution along the frame member cross-sections.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.

Nonlinear Hydroelastic Analysis Using a Time-domain Strip Theory m Regular Waves (규칙파중 시간영역 스트립이론을 이용한 비선형 유탄성 해석)

  • CHO IL-HYOUNG;HAN SUNG-KON;KWON SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.1-8
    • /
    • 2005
  • A nonlinear time-domain strip theory for vertical wave loads and ship responses is to be investigated. The hydrodynamic memory effect is approximated by a higher order differential equation without convolution. The ship is modeled as a non-uniform Timoshenko beam. Numerical calculations are presented for the S175 Containership translating with the forward speed in regular waves. The approach described in this paper can be used in evaluating ship motions and wave loads in extreme wave conditions and validating nonlinear phenomena in ship design.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.