DOI QR코드

DOI QR Code

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin (College of Mechanical Engineering, Guizhou University) ;
  • Liu, Hai-Bo (College of Mechanical and Electric Engineering, Hunan University of Science and Technology) ;
  • Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2020.05.14
  • Accepted : 2020.06.24
  • Published : 2020.07.25

Abstract

In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.

Keywords

References

  1. Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 35, 1491-1505. http://doi.org/10.1007/s00366-018-0679-2.
  2. Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Sound Vib., 20(4), 606-614. https://doi.org/10.1177/1077546312463752.
  3. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mech., 226, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  4. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
  5. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  6. Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. http://dx.doi.org/10.12989/scs.2018.26.1.089.
  7. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  8. Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonanc of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723. http://doi.org/10.1016/j.compstruct.2016.07.023.
  9. Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R. and de Sciarra, F.M. (2019), "Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity", J. Appl. Comput. Mech., 5(2), 402-413. https://doi.org/10.22055/jacm.2018.26552.1338.
  10. Arefi, M. and Zenkour, A.M. (2018a), "Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory", Alex. Eng. J., 57(3), 2177-2185. http://doi.org/10.1016/j.aej.2017.07.003.
  11. Arefi, M. and Zenkour, A.M. (2018b), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29(5), 579-590. http://doi.org/10.12989/scs.2018.29.5.579.
  12. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  13. Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
  14. Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016.
  15. Barretta, R., Sciarra, F.M.d. and Vaccaro, M.S. (2019), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. http://doi.org/10.1016/j.ijengsci.2019.103140.
  16. Barretta, R. Ali Faghidian, S. and Marotti de Sciarra, F. (2019), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.
  17. Barretta, R. Ali Faghidian, S. and Marotti de Sciarra, F., Penna, R., and Pinnola F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550.
  18. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. http://doi.org/10.1016/j.amc.2016.05.034.
  19. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5): 2053-2067. http://doi.org/10.1016/j.apm.2010.11.004.
  20. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  21. Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. http://doi.org/10.1016/j.apm.2013.04.050.
  22. Du, C. and Li, Y. (2014), "Nonlinear internal resonance of functionally graded cylindrical shells using the hamiltonian dynamics", Acta Mech. Solida Sin., 27(6), 635-647. http://doi.org/10.1016/S0894-9166(15)60008-8
  23. Du, C. and Li, Y. (2013), "Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments", Compos. Struct., 102, 164-174. http://doi.org/10.1016/j.compstruct.2013.02.028.
  24. Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
  25. Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Appl. Phys. A-Mater., 231(23), 4457-4469. https://doi.org/10.1177/0954406216668912.
  26. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  27. Faghidian, S.A. (2016), "Unified formulation of the stress field of saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72. https://doi.org/10.1016/j.ijmecsci.2016.04.003.
  28. Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in timoshenko beam theory", J. Eng. Mech., 143(9), 06017013. http://doi.org/10.1061/(ASCE)EM.1943-7889.0001297.
  29. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  30. Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear resonant response of imperfect extensible timoshenko microbeams", Int. J. Mech. Mater. Des., 13(1), 43-55. http://doi.org/10.1007/s10999-015-9316-z.
  31. Farokhi, H., Ghayesh, M. H., Kosasih, B. and Akaber, P. (2015), "On the nonlinear resonant dynamics of timoshenko microbeams: effects of axial load and geometric imperfection", Meccanica, 51(1), 155-169. http://doi.org/10.1007/s11012-015-0196-y.
  32. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. http://doi.org/10.12989/scs.2019.32.2.281.
  33. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. http://dx.doi.org/10.12989/scs.2018.27.1.109.
  34. Ganapathi, M. and Polit, O. (2017), "A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams", Appl. Math. Model., 57, 121-141. http://doi.org/10.1016/j.apm.2017.12.025
  35. Ganapathi, M., Merzouki, M. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184(15), 821-838. http://doi.org/10.1016/j.compstruct.2017.10.066
  36. Ghayesh, M.H. and Farajpour, A. (2018), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003.
  37. Ghayesh M.H., Farokhi, H., Gholipour, A., Hussain, S. and Arjomandi M. (2017), "Resonance responses of geometrically imperfect functionally graded extensible microbeams", J. Comput. Nonlin. Dyn., 12, 051002. https://doi.org/10.1115/1.4035214.
  38. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
  39. Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5),589-606. http://dx.doi.org/10.12989/scs.2018.28.5.589.
  40. Hosseini, S. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11. https://doi.org/10.1007/s00339-016-9696-4.
  41. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  42. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
  43. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019a), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  44. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/1016/j.ijengsci.2019.103143. https://doi.org/10.1016/j.ijengsci.2019.103143
  45. Karami, B., Shahsavari, D. and Janghorban, M. (2019c), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  46. Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci., 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010.
  47. Lei, Y.-L., Gao, K., Wang, X. and Yang, J. (2020), "Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints", Appl. Math. Model.,83, 754-776. https://doi.org/10.1016/j.apm.2020.03.017.
  48. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  49. Lu, L., Guo, X. and Zhao, J. (2019), "A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects", Appl. Math. Model., 68, 583-602. https://doi.org/10.1016/j.apm.2018.11.023.
  50. Machado, S.P. and Piovan, M.T. (2013), "Nonlinear dynamics of rotating box fgm beams using nonlinear normal modes", Thin Wall. Struct., 62, 158-168. https://doi.org/10.1016/j.tws.2012.09.005.
  51. Malikan, M., Krasheninnikov, M. and Eremeyev, V.A. (2020), "Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field", Int. J. Eng. Sci., 148, UNSP 103234. https://doi.org/10.1016/j.ijengsci.2019.103210.
  52. Marami, G., Nazari, S.A., Faghidian, S.A., Vakili-Tahami, F. and Etemadi, S. (2016), "Improving the mechanical behavior of the adhesively bonded joints using RGO additive", Int. J. Adhes. Adhes., 70, 277-286. https://doi.org/10.1016/j.ijadhadh.2016.07.014.
  53. Medina, L., Gilat, R., Ilic, B. and Krylov, S. (2014), "Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams", Sensor. Actuat. A-Phys., 220, 323-332. https://doi.org/10.1016/j.sna.2014.10.016.
  54. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.
  55. Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
  56. Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
  57. Polit, O., Merzouki, T. and Ganapathi, M. (2018), "Elastic stability of curved nanobeam based on higher-order shear deformation theory and nonlocal analysis by finite element approach", Finite Elem. Anal. Des., 146, 1-15. https://doi.org/10.1016/j.finel.2018.04.002.
  58. Qi, L., Huang, S., Fu, G., Zhou, S. and Jiang, X. (2018), "On the mechanics of curved flexoelectric microbeams", Int. J. Eng. Sci., 124, 1-15. https://doi.org/10.1016/j.ijengsci.2017.11.022.
  59. Romano, G., Barretta, A. and Barretta, R. (2012), "On torsion and shear of saint-venant beams", Eur. J. Mech. A-Solid., 35, 47-60. https://doi.org/10.1016/j.euromechsol.2012.01.007.
  60. She, G.L., Jiang, X.Y. and Karami, B. (2019), "On thermal snap - buckling of FG curved nanobeams", Mater. Res., Express, 6, 115008. https://doi.org/10.1088/2053-1591/ab44f1.
  61. Tang, Y.G., Liu, Y. and Zhao, D. (2018), "Effects of neutral surface deviation on nonlinear resonance of embedded temperature-dependent functionally graded nanobeams", Compos. Struct., 184, 969-879. https://doi.org/10.1016/j.compstruct.2017.10.058.
  62. Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
  63. Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.

Cited by

  1. Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment vol.16, pp.3, 2020, https://doi.org/10.2140/jomms.2021.16.371
  2. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
  3. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
  4. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  5. Transient response of functionally graded non-uniform cylindrical helical rods vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.571