• Title/Summary/Keyword: Time-series Data

Search Result 3,692, Processing Time 0.027 seconds

Outlier prediction in sensor network data using periodic pattern (주기 패턴을 이용한 센서 네트워크 데이터의 이상치 예측)

  • Kim, Hyung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.433-441
    • /
    • 2006
  • Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.

Applying Bootstrap to Time Series Data Having Trend (추세 시계열 자료의 부트스트랩 적용)

  • Park, Jinsoo;Kim, Yun Bae;Song, Kiburm
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • In the simulation output analysis, bootstrap method is an applicable resampling technique to insufficient data which are not significant statistically. The moving block bootstrap, the stationary bootstrap, and the threshold bootstrap are typical bootstrap methods to be used for autocorrelated time series data. They are nonparametric methods for stationary time series data, which correctly describe the original data. In the simulation output analysis, however, we may not use them because of the non-stationarity in the data set caused by the trend such as increasing or decreasing. In these cases, we can get rid of the trend by differencing the data, which guarantees the stationarity. We can get the bootstrapped data from the differenced stationary data. Taking a reverse transform to the bootstrapped data, finally, we get the pseudo-samples for the original data. In this paper, we introduce the applicability of bootstrap methods to the time series data having trend, and then verify it through the statistical analyses.

PHENOLOGICAL ANALYSIS OF NDVI TIME-SERIES DATA ACCORDING TO VEGETATION TYPES USING THE HANTS ALGORITHM

  • Huh, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.329-332
    • /
    • 2007
  • Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.

  • PDF

Model Checking for Time-Series Count Data

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.359-364
    • /
    • 2005
  • This paper considers a specification test of conditional Poisson regression model for time series count data. Although conditional models for count data have received attention and proposed in several ways, few studies focused on checking its adequacy. Motivated by the test of martingale difference assumption, a specification test via Ljung-Box statistic is proposed in the conditional model of the time series count data. In order to illustrate the performance of Ljung- Box test, simulation results will be provided.

Forecasting the Time-Series Data Converged on Time PLOT and Moving Average (Time PLOT과 이동평균 융합 시계열 데이터 예측)

  • Lee, Jun-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.161-167
    • /
    • 2015
  • It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

A Dynamic Correction Technique of Time-Series Data using Anomaly Detection Model based on LSTM-GAN (LSTM-GAN 기반 이상탐지 모델을 활용한 시계열 데이터의 동적 보정기법)

  • Hanseok Jeong;Han-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • This paper proposes a new data correction technique that transforms anomalies in time series data into normal values. With the recent development of IT technology, a vast amount of time-series data is being collected through sensors. However, due to sensor failures and abnormal environments, most of time-series data contain a lot of anomalies. If we build a predictive model using original data containing anomalies as it is, we cannot expect highly reliable predictive performance. Therefore, we utilizes the LSTM-GAN model to detect anomalies in the original time series data, and combines DTW (Dynamic Time Warping) and GAN techniques to replace the anomaly data with normal data in partitioned window units. The basic idea is to construct a GAN model serially by applying the statistical information of the window with normal distribution data adjacent to the window containing the detected anomalies to the DTW so as to generate normal time-series data. Through experiments using open NAB data, we empirically prove that our proposed method outperforms the conventional two correction methods.

Fuzzy Semiparametric Support Vector Regression for Seasonal Time Series Analysis

  • Shim, Joo-Yong;Hwang, Chang-Ha;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.335-348
    • /
    • 2009
  • Fuzzy regression is used as a complement or an alternative to represent the relation between variables among the forecasting models especially when the data is insufficient to evaluate the relation. Such phenomenon often occurs in seasonal time series data which require large amount of data to describe the underlying pattern. Semiparametric model is useful tool in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. In this paper we propose fuzzy semiparametric support vector regression so that it can provide good performance on forecasting of the seasonal time series by incorporating into fuzzy support vector regression the basis functions which indicate the seasonal variation of time series. In order to indicate the performance of this method, we present two examples of predicting the seasonal time series. Experimental results show that the proposed method is very attractive for the seasonal time series in fuzzy environments.

A Technology Analysis Model using Dynamic Time Warping

  • Choi, JunHyeog;Jun, SungHae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • Technology analysis is to analyze technological data such as patent and paper for a given technology field. From the results of technology analysis, we can get novel knowledge for R&D planing and management. For the technology analysis, we can use diverse methods of statistics. Time series analysis is one of efficient approaches for technology analysis, because most technologies have researched and developed depended on time. So many technological data are time series. Time series data are occurred through time. In this paper, we propose a methodology of technology forecasting using the dynamic time warping (DTW) of time series analysis. To illustrate how to apply our methodology to real problem, we perform a case study of patent documents in target technology field. This research will contribute to R&D planning and technology management.

Box-Cox Transformation for Conditional Heteroscedasticity in Domestic Financial Time Series

  • Hwang, S.Y.;Lee, J.H.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.413-422
    • /
    • 2004
  • Box-Cox power transformation is employed for analyzing volatilities in Korean financial time series such as KOSPI, KOSDAQ index and interest rates. Statistical procedures for Box-Cox transformed ARCH models are presented. For illustration, diverse financial time series data are analyzed and appropriate power transformations are suggested for each data.

  • PDF