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Abstract

Fuzzy regression is used as a complement or an alternative to represent the relation between variables among
the forecasting models especially when the data is insufficient to evaluate the relation. Such phenomenon often
occurs in seasonal time series data which require large amount of data to describe the underlying pattern. Semi-
parametric model is useful tool in the case where domain knowledge exists about the function to be estimated
or emphasis is put onto understandability of the model. In this paper we propose fuzzy semiparametric support
vector regression so that it can provide good performance on forecasting of the seasonal time series by incor-
porating into fuzzy support vector regression the basis functions which indicate the seasonal variation of time
series. In order to indicate the performance of this method, we present two examples of predicting the seasonal

time series. Experimental results show that the proposed method is very attractive for the seasonal time series in
fuzzy environments.

Keywords: Fuzzy regression, seasonal time series, semiparametric model, support vector regres-
sion.

1. Introduction

Time series analysis is a very important task in many practical circumstances such as monitoring,
diagnosis, control and dynamic decision making (Box and Jenkins, 1976; Franses, 1998; Haykin and
Kosko, 2001; West and Harrison, 1997). Most time series patterns can be described in terms of two
basic classes of components: trend and seasonality (Ghysels and Osborn, 2001; West and Harrison,
1997). The former represents a general systematic linear or nonlinear component that changes over
time and does not repeat or at least does not repeat within the time range captured by the observed data.
The latter may have a formally similar nature, however, it repeats itself in systematic intervals over
time. These two general classes of time series components may coexist in real-life data. Regression
methods can be used to deal with time series with seasonality. A collection of recent papers dealing
with seasonal time series can be found in Burman and Shumway (1998), Dominici ez al. (2004) and
Ghysels and Osborn (2001).

Various parametric and nonparametric methods have been proposed and applied for the time se-
ries data. Semiparametric model specifications for seasonal time series analysis have been extensively
discussed in the literature, e.g. Burman and Shumway (1998), Dominici et al. (2004). Semiparamet-
ric model is used for characterizing seasonal time series model, which consists of a common trend
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function over periods and additive individual trend functions that are specific to each season within
periods. For the seasonal times series the seasonal variation can be described by linear combinations
of components of the basis function of time, which leads to construct the semiparametric approach to
the seasonal times series.

Conventional methods are based on statistical and probabilistic approaches which may not be
suitable for applying purely mathematical models to the data generated by human activities. Con-
ventional methods require that at least 50 and preferably 100 observations or more should be used
(Box and Jenkins, 1976). In particular, these methods require a large amount of data to show the
underlying pattern of seasonal time series. However, when we consider the rapid change of current
socio-economic situations, it is almest impossible to collect 50 observations or more for time series
analysis. Fuzzy regression is used as a complement or an alternative to represent the relation between
variables among the forecasting models when the data is insufficient to evaluate the relation (Watada,
1992). However, some fuzzy regression models can be utilized when the data is sufficient.

Based on the works by Zadeh (1965), fuzzy set theory has been increasingly recognized as a useful
tool in handling the vagueness of human knowledge. In many practical circumstances, real intervals
or fuzzy numbers are used to model imprecise observations derived from uncertain measurements or
linguistic assessments. Tanaka er al. (1982), Tanaka (1987), Tanaka and Ishibuchi (1992) suggested
the use of fuzzy regression to solve the fuzzy environment problem and avoid modeling error. This
model is an interval prediction model based on possibility theory. Song and Chissom (1993a, 1993b,
1994) proposed the concepts of fuzzy time series 10 deal with the forecasting problem in which the
historical data are linguistic values. They applied fuzzy time series models to forecasting enrollments
of the University of Alabama. Song et al. (1995) proposed a new fuzzy time series model by means of
defining some new operations on fuzzy numbers. Chen (1996) presented a fuzzy time series method
based on the concept of Song and Chissom. Hwang ez al. (1998) proposed a new method to forecast
university enrollments, which is more efficient than the ones presented in Song and Chissom (1993b,
1994}, Song et al. (1995) in that the proposed method simplifies the arithmetic operation process.

An application of fuzzy regression to fuzzy time series analysis was found by Watada (1992).
Chang (1997) presented a fuzzy forecasting technique for seasonality in the time series data by in-
corporating fuzzy seasonality into fuzzy regression. Tseng er al. (2001) developed the fuzzy ARIMA
model by combining the works of ARIMA model and fuzzy regression. Tseng and Tzeng (2002)
proposed a fuzzy seasonal ARIMA(FSARIMA) forecasting model, which combines the advantages
of the seasonal ARIMA(SARIMA) model and the fuzzy regression model. Tsaur er al. (2002) pro-
posed a fuzzy regression model for solving time series problem with seasonal data by considering
within-cyclic and between-cyclic patterns.

In this paper, we propose a fuzzy semiparametric support vector regression(FSSVR) model for
the seasonal times series by combining the possibility estimation formulation (Tanaka et al., 1982;
Tanaka, 1987; Tanaka and Ishibuchi, 1992) integrating the property of central tendency with the
principle of semiparametric support vector regression(SSVR) (Smola et al., 1998). The rest of this
paper is organized as follows. Section 2 illustrates the fuzzy support vector regression(FSVR) for crisp
input and output data, which combines the possibility estimation formulation of fuzzy regression with
the principle of support vector regression(SVR) (Vapnik, 1995, 1998). Section 3 proposes a FSSVR
model. Section 4 applies the FSSVR model to the seasonal time series and illustrates the efficacy of
the proposed approach through real examples of seasonal time series. Finally, Section 5 presents the
conclusions.
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2. Fuzzy Support Vector Regression

In this section, we illustrate fuzzy support vector regression(FSVR) to evaluate fuzzy linear and non-
linear regression models for crisp input and output data by means of combining the possibility esti-
mation formulation (Tanaka et al., 1982; Tanaka, 1987; Tanaka and Ishibuchi, 1992) integrating the
property of central tendency with the principle of SVR (Vapnik, 1995, 1998). In the case of noisy
learning data, the use of traditional neural network, often leads to poor generalization and overfitting.
The SVR, whose foundations have been established by Vapnik, has been designed to overcome these
problems. For the estimation of central tendency, the SVR uses e-insensitive loss function defined by

0, |x| <€,
|X|5 =

|x| — €, |xl > €.

FSVR uses the standard SVR approach to yield the fuzzy estimate of output.

We now look at how to derive FSVR using the SVR approach. It is very similar to Hong and
Hwang (2005) and Hwang et al. (2006). Suppose that we are given training data {(Xy, y1), ..., (X, v}
C R™ X R. Let x;; be element of x;. Then, it is no loss of generality that we assume x;; > 0, because
we usually deal with positive observations in time series analysis. For pedagogical reasons, we begin
by describing the case of fuzzy linear regression functions Y(x), taking the form

Y(X) = Ag+ Arxy + -+ Apxy = ATX, 2.1

where x = (1,x,...,%,)" is a crisp input vector, A = (Ag, Ay, ...,A,) is a coefficient vector of
symmetric triangular fuzzy numbers, and Y(x) is the corresponding estimated fuzzy output. Here the
superscript T denotes vector or matrix transpose. From now on we use such a reexpressed input vector
x=(1,x,..., %y instead of X = (x,..., x,,)" for our purpose. A fuzzy coefficient A; is denoted as
A; = (ai, ¢;) where q; is a center and c; is a spread. By fuzzy arithmetic, the regression model (1) can
be expressed as

Y(x;) = (ap, co) + (a1, c)xi ++++ + (s Com) Xiom (2.2)
=(ap+ a1xi + -+ + AmXim, o+ C1Xi1 + -+ CoXim)

= (aTx,», CTXi) ,

where a = (ag,ay,....an) and ¢ = (co,c1,...,cm)" . By the Extension Principle (Zadeh, 1965) the
membership function of the estimated fuzzy output Y(x;) can be expressed as
i - a”x
/ly(yi) =maxql — T 05. (23)
¢ X;

As in SVR (Vapnik, 1995, 1998), the fuzzy linear regression model (2.2) can be extended to the
following nonlinear model

Y(@(x)) = (a’ ®(x), ¢/ D(x,)) 2.4)
by using the nonlinear function ® : R™*! — ¥ which maps the input space to a so-called higher

dimensional feature space. It is important to note that the dimension of space ¥ is only defined in an
implicit way (it can be infinite dimensional) and that the identity map ® leads the nonlinear model
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(2.4) 10 the linear model (2.2). Here, we use the same notations a and c as ones in the linear case to
avoid the abuse of notation, although they are in general different.

In this paper we focus on explaining how to derive the nonlinear FSVR since the linear FSVR can
be obtained straightforwardly from the nonlinear FSVR by using the identity map ®. For FSVR we
basically use the way of constructing objective function in SVR and the criterion of minimizing the
total vagueness and the sum of e-insensitive distances between the estimated output centers and the
observed output, which reflects both the property of central tendency and the possibility estimation
formulation (Hong and Hwang, 2005; Hwang et al., 2006; Tanaka and Lee, 1998). Furthermore, we
also take into account the condition that the membership degree of each observation y; is greater than
an imposed threshold possibility as 4, h € [0, 1]. This criterion requires that each observation y; has
at least h degree of belonging to Y(®(x;)) as uy(y;), which is equivalent to

uyyy=h, i=1,...,n

Then, similar to Hong and Hwang (2005), Hwang et al. (2006), the problem finding the fuzzy regres-
sion parameters is formulated as the following quadratic programming problem:

1 - “
ngicn 5 (llal[2 + IIC}{z) + 7 Z Lty Z(fzi +£) (2.5)
’ T i=1 i=1

o) < &,

yi—al ®(x;) < b + €,

A’ ®(x) -y <&+,

a’ ®(x;) + (1 — " D(x) > y;,
a’®(x;) - (1 - )" B(x)) < y;,
i=1,...,n

st

The weight coefficient y; > 0 determines the trade-off between )7, e ®(x;)®(x;)7 ¢ and the flatness
of the estimated spread of Y(®(x)), and y> > 0 determines the trade-off between Y.\, ly; — a’ ®d(x;)|.
and the flatness of the estimated center of Y(®(x)). Here, £; represent spreads of the estimated
outputs, and &, &, are slack variables representing upper and lower constraints on the outputs of the
model. Now, we can construct a Lagrange function as follows:

n

L :% (1all® + i) + 71 21 i (Ear5) 26

e
- Z i (fu - CT‘I)(Xi))
=1

- Zn: @i (521' te—yi+ aT@(Xi))

i=1

- Z 5, (g;,. +e~al Ox;) + y;)

i=1

- Z a3 (a7 ®(x) + (1 - He D(x;) - ;)

izl
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- Z o (i — aT (%) + (1 - hye’ D(x,))
=1
- Z (nli'fli + m2ibai + U;if;) .

i=1

Here, ay;, ay, o5, a3, @, M, 72 and 175, are Lagrange multipliers. It follows from the saddle point
condition that the partial derivatives of L with respect to the primal variables a, ¢, &y;, &; and &, have
to vanish for optimality.

oL « . " .

52 =0 — a- Z‘ (o2 — 03,) @ (%) — ; (a3 — 03, @(x:) = 0, 2.7)

oL =0 - c+ Y a1 Px;) — (1 - h) S (a3i + a;) ®O(x;) = 0, (2.8)

de -1 i=1

JL

—=0 - -y — iZO, (29)
06 .; Y i—m

oL

=0 - y-oP-p=0. (2.10)

6§;) 2i 2i

The algorithm would only depend on the data through inner products in ¥, i.e. on functions of
the form ®(x;)7 D(x ;). Hence it suffices to know and use K(x;,X;) = O(x;)  ®(x ;) instead of defining
®(-) explicitly. Notice that the identity map ® leads nonlinear model to linear model. The use of
a kernel function is an attractive computational short-cut. Hence, replacing ®(x)T d(y) with K(x,y)
and substituting (2.7)~(2.10) into (2.6) yields the following dual optimization problem:

- 1 (o= o) (o - 03) K ()

i,j=1

3 ) (=) (o - ) K ()

ij=1

- Z (arz,- - azi) (a3j - agj) K (Xi, Xj)
ij=1
_%(1 - h)? Z (a3,~ + agi) (a3j + agj) K(x,-,x,-)
max ij=1 (2.11)

—% Z a“a'le(xi,xj)

ij=1

+(1 - h) Z Qi (0’3]' + a;_,') K(Xi’ Xj)
ij=1

+ Z (a'z,' - a;,-)yi + Z (053i - agi) Vi
i=1 i=1

n

—€ Z (om + a;i) .

i=1
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Here the constraints are 0 < @y; < y1, 0 < @2, @; < ¥ and a3, 3; 2 0. Solving (2.11) with the
above constraints determines the Lagrange multipliers, ai;, @, g, k=2,3.
The expansions of a and ¢ can be written as

n
a= Z [(0’2,’ - a/;i) + (0'3,' - a/;-)] (I)(X,'),
i=1
¢ =) [~on+ (1= b (ax + 3,)] @Cx,).
i=1 :
We notice that a and ¢ are no longer explicitly given except the linear kernel function. However, they
are uniquely defined in the weak sense by the inner products a”’ ®(x) and ¢/ ®(x). It is noted that
T ®d(x) is nonnegative. Therefore, the nonlinear FSVR function is given as follows:

Yo = | > {2 - a3) + (e — a3,) K (i, %), Z {aii+ A =m) (a5 + )| K x:,0)|. (212)

i=1 i=1

3. Fuzzy Semiparametric Support Vector Regression

In this section, we propose a fuzzy semiparametric support vector regression(FSSVR) for the purpose
of employing for seasonal time series analysis by combining the possibility estimation formulation
(Tanaka, 1987; Tanaka et al., 1982; Tanaka and Ishibnchi, 1992) integrating the property of central
tendency with the principle of semiparametric support vector regression(SSVR) (Smola et al., 1998).
In general, semiparametric models are useful techniques in the case where additional domain knowl-
edge about the problem is available and emphasis is put onto understandability of the model. If the
major properties of data can be described by a linear combination of a small set of basis functions
{@1(), ..., @q(")}, we can construct semiparametric model, which is easy to understand and performs
well. Smola er al. (1998) extended SVR to SSVR. Following the principle of constructing SSVR,
we will extend FSVR to FSSVR. In this paper we focus on explaining how to derive the nonlinear
FSSVR since the linear FSSVR can be obtained straightforwardly from the nonlinear FSSVR by using
the identity map ®.

Let us define the vector of basis functions for x and the coefficient vector as @(x) = (¢1(X),...,
god(X))T and g = (6y,..., ﬁd)T, respectively. Then, similar to (2.5) the objective function can be
formulated as the following quadratic function:

‘J‘C‘L‘ % (Ilall® + fiel?) + ?/1 ;fn +,72 ; &+ &) G-

T o(x) < &5,
yi—a ®(x;) - BT p(x;) < & + €,
sty a’ ®(x)) + BT (%) - yi < &, + €,
a"®x;) + B p(x;) + (1 — i)e"®(x,) > y;,
a’ ®(x;) + BT p(x;) — (1 — BT B(x;) < yi.
Hence, we can construct a Lagrange function as follows:

n

L =% (lal? + llel?) + ¥, 2} i+ v, Z (&2 + &) (3.2)

i=1
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- Z ay; (§1i - CT(I)(Xi))
i=1
- Z @y (fzi +e—y; +a D) +BT¢(X1'))
i=1
= o5 (8 + e—a ®(x) — Box) + i)
i=1
= > o2 ®(x) + Box) + (1 - b D(x) - y1)
i=1
= o5 i - 2" ®) - BT p(x) + (1 - e D(x,))
i=1
- Z (it + i + 773,-5;,') :
i=1
Here, a1;, a;, a3, a3;, @, miy, 1 and 175; are Lagrange multipliers.
By using the partial derivatives of Lagrangian function (3.2) with respect to a,c, 3, &1, & and
&5, respectively, we have the same dual optimization problem as (2.11). The objective function and
the box constraints on ay;, @, @, @3;, @y, remain unchanged. The only modification comes from the
additional unregularized basis functions as follows:

n

D (on— a3+ axi— a3 pi(x) =0, forj=1,....d. (3.3)

i=1

The only difficulty remaining is how to determine ;. These 8; can be determined by employing the
Karush-Kuhn-Tucker(KKT) optimality conditions as follows:

B ox) =y — € -a’ ®x,), for ie{i:0<ay<7y), (3.4)
Blox)=yi+e- a’ ©(x,), for i e { i:0<aj < yz} , 3.5)
Box)=yi—a"®dx,)— (1 -he' O(x;), for ie{i:ay >0}, (3.6)
Bl ox) = yi—aT®(x;) + (1 - e’ ®(x;), for i€ {i:a3 >0} (3.7)
Therefore, the nonlinear FSSVR function is given as follows:
Y(x) = (Z [(61’21‘ —a5) + (@3 - a’g,-)] K(x;,x) + B p(x), (3.8)
i=1

n

D [mens + (1 = s + 31| Kxi 0) |

i=1

4. Applications of FSSVR to Seasonal Time Series

In this section we illustrate how to apply FSSVR to seasonal time series and compare FSSVR with
SARIMA and FSARIMA models in terms of the forecasting performance. We consider two real data
sets quoted from Montgomery et al. (1990). One is regarding the monthly sales volume of soft drinks.
The other is regarding the monthly demand for a carpet.
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4.1. Additive decomposition method

Suppose the series {Z;} is seasonal with seasonal period s. Seasonal time series have been convention-
ally thought to consist of an mixture of trend(7,), seasonal(S,) and irregular components(e,). We use
an additive structural decomposition (West and Harrison, 1997) of a seasonal time series Z, in terms
of three components:

Z =T, +S,+e, .1

In the decomposition (4.1), the trend component T, can be written as a function of x, = (1,Z,_y,...,
Z,)T for some k. Here, k is determined from the training data. In this paper we assume a linear
model for both data sets. Thus, the linear kernel is used for both data sets. The seasonal component
S; is written as

q . .
Si=1+) [,31,. sin(@) By cos(z—”s-ff)], “2)
=

where g = [s/2] with [x] equal to the integer portion of x.
Accordingly, the basis function vector ¢(x,) and the coefficient vector 8 of FSSVR are written as

T
px,) = (t’ Sin(@) , €08 (%) yees ,Sin(—zn—qt),cos (@))
S Ky s s
B = (L,Bu,ﬁzl, cee ’ﬁlq’ﬂzq)T .

In the applications of FSSVR to seasonal time series the associated membership degree k is set to 0.

4.2. Model selection

The functional structure of FSSVR is characterized by 7y, ¥, and € or the kemel parameter. In this
subsection, we describe a method for selecting these important parameters of FSSVR. There could be
several parameter selection methods. In this paper we use a kind of cross-validation(CV) method. If
data is not scarce, then the set of available input-output'measurements can be divided into two parts.
One of them is used to train a model while the other, called the test set, is used for testing the model.
In this way several different models, all trained on the training set, can be compared on the test set.
According to their performance on the test set, we try to infer the proper values of parameters. This is
the basic form of cross-validation. A better method is to partition the original set in several different
ways and to compute an average score over the different partitions.

In this paper, we do not use the above CV methods, since we do not have the training data large
enough to divide. As illustrated, the linear kernel is used in this paper. Thus, we do not need to
consider selecting the kernel parameter. We choose the parameter values (yy,y2, €) which for the
training data minimize

n n
o) Y (Z-2) + Y (12Y - z) +|z. - 2H)|. 4.3)
=1

t=1

1
n

where r(p,n) = (1- \/ p—plnp+1Inn/(2n) ):1 for p = v/n with VC-dimension (for Vapnik-Chervon-
(%) *)
2

enkis dimension) v = number{a;; : 0 < a(zl. < 2} — 1 and the number of the training data n and
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Figure 1: One-step ahead forecasting results of FSSVR for the test data of soft drink data: forecasted
bounds(dotted line), forecasted sales(dashed line) and actual sales(solid line).

(u)+ = max(u,0). The VC-dimension is a measure of the capacity of a statistical learning algorithm
(Cherkassky er al., 1999; Vapnik, 1995, 1998). Here, ZtL and Zf] represent the forecasted lower and
upper bounds of FSSVR, respectively. The first term of (4.3) is VC-based model selection criterion
and it is more powerful than classical model selection criteria especially for small crisp samples
(Chang, 1997). Thus, it is reasonable to use (4.3) as the model selection criterion for FSSVR.

4.3. Numerical studies

In this subsection, we use two real examples from Montgomery et al. (1990) to verify the effectiveness
of FSSVR for seasonal time series.

4.3.1. The soft drink time series data

In order to demonstrate the performance the FSSVR model, we first consider soft drink data set
(Montgomery et al., 1990), which consists of 48 monthly sales volume of a 32-oz soft drink in hun-
dreds of cases from January 1972 to December 1975. We divide the whole data into 2 partitions - the
training data (# = 1 to 36) and the test data (r = 37 to 48). Tseng and Tzeng (2002) preprocessed
soft drink data using logarithmic transformation and then acquired using SAS package software the
best model of the training data which is SARIMAC(1, 1,0)(0, 1,0),,. In this paper we use original soft
drink data without being preprocessed. We also obtain the best model as SARIMA(I, 1,0)(0, 1,0),,
using SPSS package software. The best model is actually determined using Akaike information crite-
rion(AIC) and Bayesian information criterion(BIC) in this package software. Thus, we recognize that
x,=(1,Z_)",s=12and g = 6.

Using the model selection criterion (4.3), we select (yi,y2, €) as (3, 10, 0). The most of experi-
ments are conducted in MATLAB environment over Pentium IV at 2.0GHz. It takes CPU time 2.0469
in seconds to train FSSVR with already adaptively tuned parameters. Thus, it does not take long to
train FSSVR. The mean absolute error(MAE) and the mean squared error(MSE) for the test data are
(4.84,31.50) for FSSVR and (6.96, 68.41) for SARIMA and FSARIMA. Figures 1, 2 and 3 show the
actual sales, one-step ahead forecasts, upper and lower bounds of FSSVR, SARIMA and FSARIMA
for the test data from January 1975 up to December 1975. Table 1 summarizes the actual sales, the
upper and lower bounds of three models for the test data. As seen from Figures 1, 2 and 3 and Table 1,
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Figure 2: One-step ahead forecasting results of SARIMA for the test data of soft drink data: forecasted
bounds(dotted line), forecasted sales(dashed line) and actual sales(solid line).
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Figure 3: One-step ahead forecasting results of FSARIMA for the test data of soft drink data: forecasted
bounds(dotted line), forecasted sales(dashed line) and actual sales(solid line).

the bounds of FSSVR and SARIMA contain all of test data points, while a bound of FSARIMA does
not contain the corresponding data point. The average length of the prediction intervals is 14.71 for
FSSVR, 35.08 for SARIMA and 29.80 for FSARIMA. Thus, we see the prediction interval of FSSVR
model is narrower than the 95% prediction interval of SARIMA model and the prediction interval
of FSARIMA model. Based on our experiment, we can see that FSSVR is an effective method to
forecast the monthly sales of soft drink.

4.3.2. The carpet time series data

In this example we consider carpet data set from Montgomery et al. (1990), which consists of 48
monthly demand for a carpet from January 1970 to December 1973. We divide the whole data into 2
partitions - the training data (+ = 1 to 36), and the test data (+ = 37 to 48). We obtain the best model
of the training data as SARIMA(1, 0,0)(1, 1, 0);, using AIC and BIC in SPSS package software. As
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Table 1: Actual values, forecasted lower and upper bounds of FSSVR, SARIMA and FSARIMA for the test
data of soft drink data.

Date Actual sales FSSVR SARIMA FSARIMA

Jan-75 52 (49.98, 6l1.61) (40.32, 58.12) (34.32, 64.12)
Feb-75 60 (55.75, 66.57) (46.06, 66.16) (41.21, 71.01)
Mar-75 66 (61.41, 73.21) (50.15, 74.89) (47.62, 71.42)
Apr-75 80 (69.96, 82.74) (60.39, 88.10) (59.34, 89.14)
May-75 85 (74.14, 88.57) (68.21, 99.34) (68.87, 98.67)
Jun-75 95 (80.12, 95.44) (68.87, 102.97) (71.02, 100.82)
Tul-75 100 (84.47, 100.99) (75.18, 112.32) (78.85, 108.65)
Aug-75 104 (87.38, 104.82) (75.73, 115.75) (80.84, 110.64)
Sep-75 101 (82.99, 101.06) (68.21, 111.09) (74.75, 104.55)
Oct-75 94 (79.16, 96.45) (62.76, 108.44) (70.70, 100.50)
Nov-75 81 (65.86, 82.35) (38.31, 86.74) (47.63, 77.43)
Dec-75 70 (63.10, 77.02) (39.88, 91.05) (50.57, 80.37)

Average length 14.71 35.08 29.80

110
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80 1

50

% 20 P Py pr 48
time
Figure 4: One-step ahead forecasting results of FSSVR for the test data of carpet data: forecasted bounds (dotted
line), forecasted demand (dashed line) and actual demand (solid line).

before, we recognize that x, = (1,z_;)7, s = 12 and ¢ = 6. Using the model selection criterion
(4.3), we select (1, 2, €) as (40, 190, 0). The most of experiments are also conducted in MATLAB
environment over Pentium IV at 2.0GHz. It takes CPU time 1.8594 in seconds to train FSSVR with
already adaptively tuned parameters and thus does not take long.

The mean absolute error(MAE) and the mean squared error(MSE) for the test data are (0.80, 0.96)
for FSSVR and (1.03, 1.61) for SARIMA and FSARIMA. Figures 4, 5 and 6 show the actual demand,
one-step ahead forecasts, upper and lower bounds of FSSVR, SARIMA and FSARIMA for the test
data from January 1973 up to December 1973. Figure 4 summarizes the actual demand, the upper
and lower bounds of three models for the test data. As seen from Figures 4, 5 and 6 and Table 2, all
bounds of FSSVR, SARIMA and FSARIMA contain their corresponding data points. The average
length of the prediction intervals is 4.70 for FSSVR, 5.59 for SARIMA and 7.21 for FSARIMA.
Thus, we notice the prediction interval of FSSVR model is narrower than the 95% prediction interval
of SARIMA model and the prediction interval of FSARIMA model. Based on our experiment, we
recognize that FSSVR is a convincing method to forecast the monthly demand of the carpet.
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Figure 5: One-step ahead forécasting results of SARIMA for the test data of carpet data: forecasted
bounds(dotted line), forecasted demand(dashed line) and actual demand(solid line).
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Figure 6: One-step ahead forecasting results of FSARIMA for the test data of carpet data: forecasted
bounds(dotted line), forecasted demand(dashed line) and actual demand(solid line).

5. Conclusion

In this paper we propose the FSSVR model for seasonal time series analysis by combining the advan-
tages of the SSVR model and Tanaka’s fuzzy regression model, and apply it to forecast the monthly
sales volume of the soft drink and the monthly demand of the carpet. One advantage of the FSSVR
model is that the seasonal variation is easily described by the semiparametric term which is a simple
linear combination of sine and cosine waves, and that the related parameters are easily estimated by a
linear programming. We also deal with the problem of selecting the parameters of the FSSVR model
which have a lot of influence on the forecasting accuracy. These parameters are tuned using VC-based
model selection criterion.

From the empirical results of two examples, we find all of the three models have the capacity to
treat growth trends and seasonal cycles. However, we notice that the FSSVR model performs better
than SARIMA and FSARIMA in terms of MAE, MSE and the average length of the prediction inter-
vals. That is, the MAE and the MSE of the FSSVR model are appreciably smalier than SARIMA and
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Table 2: Actual demand, forecasted lower and upper bounds of FSSVR, SARIMA and FSARIMA for the test
data of carpet data.

Date actual demand FSSVR SARIMA FSARIMA
Jan-73 66 (65.22, 69.49) (64.74,70.23) (64.41, 70.55)
Feb-73 67 (64.29, 68.30) (63.36, 68.93) (62.32, 69.97)
Mar-73 71 (69.42, 73.35) (68.85, 74.46) (67.93, 75.38)
Apr-73 78 (77.78, 81.98) (77.11, 82.70) (76.33, 83.48)
May-73 81 (78.94, 83.61) (78.42, 84.01) (78.18, 84.25)
Jun-73 88 (85.95, 90.66) (85.42,91.01) (84.47,91.96)
Jul-73 93 (91.85, 96.93) (90.99, 96.59) (90.05, 97.54)
Aug-73 96 (93.32, 98.69) (92.84, 98.44) (91.72, 99.56)
Sep-73 93 (90.52, 95.93) (89.99, 95.59) (89.22, 96.36)
Oct-73 87 (85.43,90.62) (85.99,91.59) (84.87,92.71)
Nov-73 88 (84.20, 89.05) (82.69, 88.28) (81.57, 89.41)
Dec-73 83 (81.32, 86.06) (81.57,87.17) (81.15, 87.58)

Average length 4.70 5.59 7.21

FSARIMA. In addition, the interval of the FSSVR model is narrower than SARIMA and FSARIMA.
We also observe it does not take much CPU time to train the FSSVR model with already adaptively
tuned parameters and to forecast the future. Thus, we realize the FSSVR model provides a promising
alternative to the analysis of seasonal time series consisting of limited amount of data. In addition,
our FSSVR model has the following advantages over FSARIMA:

1. Our FSSVR model can capture more complex pattern of seasonal time series than FSARIMA,
since the FSSVR model is inherently nonlinear model, whereas FSARIMA is linear model.

2. The FSSVR model can forecast better the central tendency than FSARIMA, since it takes over the
forecasting capability of SVR for time series.
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