Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(2020-0-01826, AI 기반 선도적 실전문제해결 연구인재 양성).
References
- B. Lim, S. O. Arik, N. Loeff, and T. Pfister, "Temporal fusion transformers for interpretable multi-horizon time series forecasting," arXiv preprint arXiv:1912.09363, 2019.
- F. Luna-Perejon, M. J. Dominguez-Morales, and A. Civit-Balcells, "Wearable fall detector using recurrent neural networks," Sensors, Vol.19, No.22, pp.4885, 2019. https://doi.org/10.3390/s19224885
- D. Kraft, K. Srinivasan, and G. Biebe, "Deep learning based fall detection algorithms for embeded systems, smartwatches, and IoT devices using accelerometers," Technologies, Vol.8, No.4, pp.72, 2020. https://doi.org/10.3390/technologies8040072
- H. Hewamalage, C. Bergmeir, and K. Bandara, "Recurrent neural networks for time series forecasting: Current status and future directions," International Journal of Forecasting, Vol.37, No.1, pp.388-427, 2021. https://doi.org/10.1016/j.ijforecast.2020.06.008
- D. Salinas, V Flunkert, and J. Gasthaus, "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Vol.36, No.3, pp.1181-1191, 2020. https://doi.org/10.1016/j.ijforecast.2019.07.001
- R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, "A multi-horizon quantile recurrent forecaster," arXiv preprint arXiv:1711.11053, 2017.
- Y. Liu, C. Gong, L. Yang, and Y. Chen, "DSTP-RNN: A dualstage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction," Expert Systems with Applications, Vol.143, pp.113082, 2020. https://doi.org/10.1016/j.eswa.2019.113082
- C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, and R. Yuan, "Multi-horizon time series forecasting with temporal attention learning," Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.2527-2535, 2019.
- C. Favorita, Corporacion favorita grocery sales forecasting competition, 2009.
- Yahoo Finance, Carriage Services, Inc., 2021.
- X. Liang, T. Zou, B. Guo, and S. Li, "Assessing Beijing's PM2.5 pollution: Severity, weather impact," APEC and Winter heating, Proceedings of Royal Society, Vol.471, No.2182, pp.20150257, 2015.
- H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, and H. Xiong, "Informer: Beyond efficient transformer for long sequence time-series forecasting," Proceedings of AAAI, 2021.