• Title/Summary/Keyword: Time-multiplexing

Search Result 557, Processing Time 0.025 seconds

Baseband Signal Compensation Scheme for Frequency Selective Fading Channel and RF Impairments in OFDM System (OFDM 시스템에서 주파수 선택적 페이딩 채널과 RF 불완전 변환 극복을 위한 기저대역 신호보상 기법)

  • Kim, Jae-Kil;Kim, Jeong-Been;Hwang, Jin-Yong;Shin, Dong-Chul;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.55-64
    • /
    • 2010
  • In this paper, we propose a new compensation scheme for combined channel distortions and RF impairments based on the analysis of the impacts of IQ(In-phase/Quadrature) imbalance and phase noise on the OFDM(Orthogonal Frequency Division Multiplexing) system in the direct conversion transceiver and frequency selective fading channel distortion. The proposed scheme estimates the combined distortion by the use of training symbols and the residual distortion by pilot symbols and compensates the combined distortion, including IQ imbalance, phase noise and multipath fading at the same time. The simulation results show that the proposed scheme compensates the combined distortion of IQ imbalance, phase noise and multipath fading simultaneously.

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

A Study on an Adaptive UPC Algorithm Based on Traffic Multiplexing Information in ATM Networks (ATM 망에서 트래픽 다중화 정보에 의한 적응적 UPC 알고리즘에 관한 연구)

  • Kim, Yeong-Cheol;Byeon, Jae-Yeong;Seo, Hyeon-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2779-2789
    • /
    • 1999
  • In this paper, we propose a new neural Buffered Leaky Bucket algorithm for preventing the degradation of network performance caused by congestion and dealing with the traffic congestion in ATM networks. We networks. We justify the validity of the suggested method through performance comparison in aspects of cell loss rate and mean transfer delay under a variety of traffic conditions requiring the different QoS(Quality of Service). also, the cell scheduling algorithms such as DWRR and DWEDF used for multiplexing the incoming traffics are induced to get the delay time of the traffics fairly. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate is changed by the predicted values. The prediction of traffic loss rate by neural networks can effectively reduce the cell loss rate and the cell transfer delay of next incoming cells and be applied to other traffic control systems. Computer simulation results performed for traffic prediction show that QoSs of the various kinds of traffics are increased.

  • PDF

Detection algorithm for DAA using Decision Directed method in MB-OFDM (MB-OFDM에서 충돌회피를 위한 결정궤환방식의 간섭신호 검출 기법)

  • Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Since the MB-OFDM(Multi-Band Orthogonal Frequency Division Multiplexing) is an ultra wideband communication system operated on ISM(Industrial, Scientific and Medical) band, DAA(Detect-And-Avoid) is required for co-existence with the other communication service. In this paper we propose the new detection algorithm based on decision-feedback, which shows faster convergence time and less complexity than previous works. The proposed algorithm detects interference above -20dB in AWGN(Additive White Gaussian Noise) and LOS(Line-Of-Sight) channel, and close to AWGN in non-LOS channel under appropriate channel clipping.

Multi-antenna diversity gain in terrestrial broadcasting receivers on vehicles: A coverage probability perspective

  • Ahn, Sungjun;Lee, Jae-young;Lim, Bo-Mi;Kwon, Hae-Chan;Hur, Namho;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.400-413
    • /
    • 2021
  • This paper theoretically and empirically explores the reliability gain that can be obtained by installing multiple antennas in on-vehicle broadcasting receivers. Analytical derivations reveal that maximal-ratio-combining-based diversity allows a multi-antenna receiver (MR) to achieve significantly better coverage probability than a single-antenna receiver (SR). In particular, the notable MR gains for low-power reception and high-throughput services are highlighted. We also discuss various aspects of mobile MRs, including geometric coverage, volume of the users served, and impact of receiver velocity. To examine the feasibility of MRs in the real world, extensive field experiments were conducted, particularly with on-air ATSC 3.0 broadcast transmissions. Relying on the celebrated erroneous second ratio criterion, MRs with two and four antennas were verified to achieve notable reliability gains over SRs in practice. Furthermore, our results also prove that layered-division multiplexing can cope better with receiver mobility than traditional time-division multiplexing when multiple services are intended in the same radio frequency channel.

A Wide-field-of-view Table-ornament Display Using Electronic Holography

  • Daerak Heo;Hosung Jeon;Sungjin Lim;Joonku Hahn
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.183-190
    • /
    • 2023
  • Three-dimensional (3D) displays provide a significant advantage over traditional 2D displays by offering realistic images, and table-style displays in particular are ideal for generating 3D images that appear to float above a table. These systems are based on multiview displays, and are typically operated using temporal or spatial multiplexing methods to expand the viewing zone (VZ). The VZ is an expanded space that results from merging the sub-viewing zones (SVZs) from which an individual view is made. To increase the viewing angle, many SVZs are usually required. In this paper, we propose a table-ornament electronic holographic display that utilizes 3f parabolic mirrors. In holography, the VZ is not simply expanded but synthesized from SVZs to implement continuous motion parallax. Our proposed system is small enough to be applied as a table ornament, in contrast to traditional tabletop displays that are large and not easily portable. By combining multiview and holographic technologies, our system achieves continuous motion parallax. Specifically, our system projects 340 views using a time-multiplexing method over a range of 240 degrees.

SC-FDE System Using Decision-Directed Method Over Time-Variant Fading Channels (시변 페이딩 채널에 대한 결정 지향 방식의 SC-FDE 시스템)

  • Kim, Ji-Heon;Yang, Jin-Mo;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-234
    • /
    • 2007
  • This paper describes a transmission method based on a single carrier with frequency domain equalization (SC-FDE) scheme with cyclic prefix(CP). The SC-FDE has similar features with orthogonal frequency division multiplexing(OFDM). Similar to OFDM, a SC-FDE system is computationally efficient since equalization is reformed on a block of data in the frequency domain. Especially, it has the advantage of low sensitivity to nonlinear distortion compared to OFDM. In this paper, we design a SC-FDE receiver using decision-directed method, and present simulation results.

Optimal Power Allocation for Channel Estimation of OFDM Uplinks in Time-Varying Channels

  • Yao, Rugui;Liu, Yinsheng;Li, Geng;Xu, Juan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This paper deals with optimal power allocation for channel estimation of orthogonal frequency-division multiplexing uplinks in time-varying channels. In the existing literature, the estimation of time-varying channel response in an uplink environment can be accomplished by estimating the corresponding channel parameters. Accordingly, the optimal power allocation studied in the literature has been in terms of minimizing the mean square error of the channel estimation. However, the final goal for channel estimation is to enable the application of coherent detection, which usually means high spectral efficiency. Therefore, it is more meaningful to optimize the power allocation in terms of capacity. In this paper, we investigate capacity with imperfect channel estimation. By exploiting the derived capacity expression, an optimal power allocation strategy is developed. With this developed power allocation strategy, improved performance can be observed, as demonstrated by the numerical results.

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly

Channel Estimation and Detection Techniques for OFDM Systems in Time Varying Channels (OFDM 시스템에서의 시변 채널 추정 및 신호 검출)

  • 김형중;박정호;박병준;김지형;강창언;홍대식
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.418-421
    • /
    • 2003
  • In this thesis, a new channel estimation technique is proposed for orthogonal frequency division multiplexing (OFDM) over time varying channels. The channel estimation algorithm exploits the fact that the estimated channel impulse response (CIR) by using pilot signal is the average value of the CIR variation within an OFDM symbol period. With this fact, the CIR variation is simply estimated through lowpass interpolation of the CIRs of the adjacent OFDM symbols. For signal detection, a time domain equalizer is used in this thesis. Simulation results show that the proposed system improves the bit error rate (BER) over time varying channels.

  • PDF