DOI QR코드

DOI QR Code

A Wide-field-of-view Table-ornament Display Using Electronic Holography

  • Daerak Heo (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Hosung Jeon (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Sungjin Lim (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Joonku Hahn (School of Electronic and Electrical Engineering, Kyungpook National University)
  • Received : 2022.12.30
  • Accepted : 2023.03.14
  • Published : 2023.04.25

Abstract

Three-dimensional (3D) displays provide a significant advantage over traditional 2D displays by offering realistic images, and table-style displays in particular are ideal for generating 3D images that appear to float above a table. These systems are based on multiview displays, and are typically operated using temporal or spatial multiplexing methods to expand the viewing zone (VZ). The VZ is an expanded space that results from merging the sub-viewing zones (SVZs) from which an individual view is made. To increase the viewing angle, many SVZs are usually required. In this paper, we propose a table-ornament electronic holographic display that utilizes 3f parabolic mirrors. In holography, the VZ is not simply expanded but synthesized from SVZs to implement continuous motion parallax. Our proposed system is small enough to be applied as a table ornament, in contrast to traditional tabletop displays that are large and not easily portable. By combining multiview and holographic technologies, our system achieves continuous motion parallax. Specifically, our system projects 340 views using a time-multiplexing method over a range of 240 degrees.

Keywords

Acknowledgement

This work was supported by a cross-ministry GigaKorea project (GK18D0100, Development of Telecommunications Terminal with Digital Holographic Table-top Display) grant funded by the Korean government (MSIT).

References

  1. M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, "3D Displays," Annu. Rev. Vis. Sci. 2, 397-435 (2016). https://doi.org/10.1146/annurev-vision-082114-035800
  2. J. Geng, "Three-dimensional display technologies," Adv. Opt. Photonics 5, 456-535 (2013). https://doi.org/10.1364/AOP.5.000456
  3. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, "Three-dimensional display technologies of recent interest: principles, status, and issues," Appl. Opt. 50, H87-H115 (2011). https://doi.org/10.1364/AO.50.000H87
  4. E. Lueder, 3D Displays (John Wiley & Sons, 2012).
  5. H. Shim, D. Lee, J. Park, S. Yoon, H. Kim, K. Kim, D. Heo, B. Kim, J. Hahn, Y. Kim, and W. Jang, "Development of a scalable tabletop display using projection-based light field technology," J. Inf. Disp. 22, 285-292 (2021). https://doi.org/10.1080/15980316.2021.1965048
  6. S. Yoshida, "Virtual multiplication of light sources for a 360°-viewable tabletop 3D display," Opt. Express 28, 32517-32528 (2020). https://doi.org/10.1364/oe.408628
  7. M. Makiguchi, H. Takada, T. Kawakami, and M. Sasai, "42-4: 360-degree tabletop type 3D screen system using linear blending of viewing zones and spatially imaged iris plane," SID Symposium Digest Tech. Papers 50, 585-588 (2019).
  8. M. Makiguchi, D. Sakamoto, H. Takada, K. Honda, and T. Ono, "Interactive 360-degree glasses-free tabletop 3D display," in Proc. 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA, Oct. 17, 2019), pp. 625-637.
  9. L. Luo, Q.-H. Wang, Y. Xing, H. Deng, H. Ren, and S. Li, "360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer," Opt. Commun. 438, 54-60 (2019). https://doi.org/10.1016/j.optcom.2019.01.013
  10. J.-Y. Hong, S.-G. Park, C.-K. Lee, S. Moon, S.-J. Kim, J. Hong, Y. Kim, and B. Lee, "See-through multi-projection three-dimensional display using transparent anisotropic diffuser," Opt. Express 24, 14138-14151 (2016). https://doi.org/10.1364/OE.24.014138
  11. S.-G. Park, C.-K. Lee, and B. Lee, "Compact multi-projection 3D display using a wedge prism," Proc. SPIE 9391, 302-308 (2015).
  12. J.-H. Lee, Y. Kim, J. Park, D. Nam, and D.-S. Park, "36.4: Design and calibration of 100-Mpixel multi-projection 3D display with an enhanced image quality," SID Symposium Digest Tech. Papers 45, 520-523 (2014). https://doi.org/10.1002/j.2168-0159.2014.tb00136.x
  13. H.-J. Choi, Y. M. Kim, J. Jung, K.-M. Jung, and S.-W. Min, "Tiling integral floating display system with optimized viewing window," Appl. Opt. 51, 5453-5457 (2012). https://doi.org/10.1364/AO.51.005453
  14. S. Iwasawa, M. Kawakita, S. Yano, M. Sakai, Y. Haino, M. Sato, and N. Inoue, "A 200-inch 3D-glasses-free high-definition projection display," in Proc. the 2011 Annual Technical Conference and Exhibition-SMPTE (Hollywood, CA, USA, Oct. 25-27, 2011), pp. 1-3.
  15. T. Inoue and Y. Takaki, "Table screen 360-degree holographic display using circular viewing-zone scanning," Opt. Express 23, 6533-6542 (2015). https://doi.org/10.1364/OE.23.006533
  16. M.-U. Erdenebat, G. Baasantseren, N. Kim, K.-C. Kwon, J. Byeon, K.-H. Yoo, and J.-H. Park, "Integral-floating display with 360 degree horizontal viewing angle," J. Opt. Soc. Korea 16, 365-371 (2012). https://doi.org/10.3807/JOSK.2012.16.4.365
  17. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, "Occlusion-capable multiview volumetric three-dimensional display," Appl. Opt. 46, 1244-1250 (2007). https://doi.org/10.1364/AO.46.001244
  18. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, "Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators," Opt. Express 16, 12372-12386 (2008). https://doi.org/10.1364/OE.16.012372
  19. M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, "Ultragram: A generalized holographic stereogram," Proc. SPIE 1461, 142-155 (1991).
  20. T. S. Huang, "Digital holography," Proc. IEEE 59, 1335-1346 (1971). https://doi.org/10.1109/PROC.1971.8408
  21. W. D. Furlan, M. Martinez-Corral, B. Javidi, and G. Saavedra, "Analysis of 3-D integral imaging displays using the Wigner distribution," J. Disp. Technol. 2, 180-185 (2006). https://doi.org/10.1109/JDT.2006.874508
  22. Zemax, "OpticStudio," (Zemax, Published date: 2020) https://www.zemax.com/pages/opticstudio (Accessed date: Sep. 1, 2020).