In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.
본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.
본 논문은 바이스태틱 RCS와 모노스태틱 RCS를 이용하여 각각 표적 구분 실험을 수행하고 그 성능을 비교 분석하였다. 모노스태틱 및 바이스태틱 RCS로부터 특성을 추출하기 위하여 시간-주파수 영역 해석법인 STFT와 CWT를 이용하였으며, 다중 퍼셉트론 신경망을 구분기로 이용하였다. 실험 결과, 모노스태틱과 바이스태틱 RCS 모두 CWT가 STFT보다 더 나은 구분 성능을 보여주었다. 또한, STFT에서는 바이스태틱 RCS를 이용했을 때, CWT에서는 모노스태틱 RCS를 이용하였을 때 대체적으로 더 좋은 성능을 나타내었다. 결과적으로 본 논문을 통하여 바이스태틱 RCS도 모노스태틱 RCS처럼 표적 구분에 똑같이 적용할 수 있다는 것을 알 수 있었다.
Recently, diagnosis techniques have been investigated to detect a Partial Discharge associated with a dielectric material defect in a high voltage electrical apparatus, However, the properties of detection technique of Partial Discharge aren't completely understood because the physical process of Partial Discharge. Therefore, this paper analyzes the process on surface discharge of polymer insulator using wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time~frequency domain. As it is important to develop a non-contact method for detecting the kaolin contamination degree, this research analyzes the electromagnetic waves emitted from Partial Discharge using wavelet transform. This result experimentally shows the process of Partial Discharge as a two-dimensional distribution in the time-frequency domain. Feature extraction parameter namely, maximum and average of wavelet coefficients values, wavelet coefficients value at the point of $95\%$ in a histogram and number of maximum wavelet coefficient have used electromagnetic wave signals as input signals in the preprocessing process of neural networks in order to identify kaolin contamination rates. As result, root sum square error was produced by the test with a learning of neural networks obtained 0.00828.
Recently, diagnosis techniques have been investigated to detect a partial discharge associated with a dielectric material defect in a high-voltage electrical apparatus However, the properties of detection technique of PD aren't completely understood because the physical process of PD. Therefore, this paper analyzes the process on Surface Discharge of Polymer Insulator using Wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time-frequency domain. As it is important to develop a non-contact method for detecting the Contamination Degree, this paper analyzes the electromagnetic waves emitted from PD using Wavelet transform. This paper experimentally shows the process of PD as a two-dimensional distribution in the time-frequency domain. This method is shown to be useful for detecting prediction of contamination degree.
기존의 누설전류기법에서 한층 진일보된 비접촉식 수신용 안테나를 이용하여 복잡한 지역과 광범위한 지역에서 효율적인 고분자 애자의 오손정도를 진단하기 위하여 본 연구를 착수하였다. 착수된 연구는 가공된 챔버 내 설치된 고분자애자에 인위적으로 카올린과 소금을 혼합후 증류수에 혼합하여 인공 오손실시 후 방사전자파와 스페트럼 그리고 부분방전전하량을 동시에 측정 후 전자파 신호에 대한 카올린의 오손정도에 대한 특징추출을 위하여 다우비치 이산웨이블렛 변환기법에 적용 후 각각의 통계적인 파라미터의 특징을 추출하였다.
사이버 공격으로 인한 국가, 기업 등의 피해를 막기 위해 공격자의 접근을 사전에 감지하는 이상 탐지 기술이 꾸준히 연구되어왔다. 외부 혹은 내부에서 침입하는 공격들을 즉각적으로 막기 위해 실행시간의 감축과 오탐지 감소는 필수불가결하다. 본 연구에서는 공격 이벤트의 유형과 빈도가 이상 탐지 정탐률 향상 및 오탐률 감소에 영향을 미칠 것으로 가설을 세우고, 검증을 위해 Los Alamos National Laboratory의 2015년 로그인 로그 데이터셋을 사용하였다. 전처리 된 데이터를 대표적인 이상행위 탐지 알고리즘에 적용한 결과, 공격 이벤트 유형과 빈도를 동시에 적용한 특성을 사용하는 것이 이상행위 탐지의 오탐률과 수행시간을 절감하는데 매우 효과적임을 확인하였다.
MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.
In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.
This paper proposed a new approach for endpoint detection of isolated speech, which proves to significantly improve the endpoint detection performance. The proposed algorithm relies on the root mean square energy (rms energy), zero crossing rate and spectral characteristics of the speech signal where the Euclidean distance measure is adopted using cepstral coefficients to accurately detect the endpoint of isolated speech. The algorithm offers better performance than traditional energy-based algorithm. The vocabulary for the experiment includes English digit from one to nine. These experimental results were conducted by 360 utterances from a male speaker. Experimental results show that the accuracy of the algorithm is quite acceptable. Moreover, the computation overload of this algorithm is low since the cepstral coefficients parameters will be used in feature extraction later of speech recognition procedure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.