DOI QR코드

DOI QR Code

Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS

모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석

  • Lee, Sung-Jun (Department of Electronic Engineering, Hannam University) ;
  • Choi, In-Sik (Department of Electronic Engineering, Hannam University)
  • 이성준 (한남대학교 전자공학과) ;
  • 최인식 (한남대학교 전자공학과)
  • Published : 2010.12.31

Abstract

In this paper, we analyzed the performance of radar target classification using the monostatic and bistatic radar cross section(RCS) for four different wire targets. Short time Fourier transform(STFT) and continuous wavelet transform (CWT) were used for feature extraction from the monostatic RCS and the bistatic RCS of each target, and a multi-layered perceptron(MLP) neural network was used as a classifier. Results show that CWT yields better performance than STFT for both the monostatic RCS and the bistatic RCS. And, when STFT was used, the performance of the bistatic RCS was slightly better than that of the monostatic RCS. However, when CWT was used, the performance of the monostatic RCS was slightly better than that of the bistatic RCS. Resultingly, it is proven that bistatic RCS is a good cadndidate for application to radar target classification in combination with a monostatic RCS.

본 논문은 바이스태틱 RCS와 모노스태틱 RCS를 이용하여 각각 표적 구분 실험을 수행하고 그 성능을 비교 분석하였다. 모노스태틱 및 바이스태틱 RCS로부터 특성을 추출하기 위하여 시간-주파수 영역 해석법인 STFT와 CWT를 이용하였으며, 다중 퍼셉트론 신경망을 구분기로 이용하였다. 실험 결과, 모노스태틱과 바이스태틱 RCS 모두 CWT가 STFT보다 더 나은 구분 성능을 보여주었다. 또한, STFT에서는 바이스태틱 RCS를 이용했을 때, CWT에서는 모노스태틱 RCS를 이용하였을 때 대체적으로 더 좋은 성능을 나타내었다. 결과적으로 본 논문을 통하여 바이스태틱 RCS도 모노스태틱 RCS처럼 표적 구분에 똑같이 적용할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. J. I. Glaser, "Some results in the bistatic Radar Cross Section(RCS) of complex objects", Proceedings of the IEEE, vol. 77, no. 5, pp. 639-648, May 1989. https://doi.org/10.1109/5.32054
  2. M. Cherniakov, Bistatic Radar: Principles and Practice, John Wiley & Sons Ltd., 2007.
  3. M. Cherniakov, "Space-surface bistatic synthetic aperture radar-prospective and problems", Proc. RADAR 2002 Conference, Edinburgh, UK, no. 490, pp. 22-26, Oct. 2002.
  4. A. K. Mishra, B. Mulgrew, "Bistatic SAR ATR", IET Radar, Sonar & Navigation, vol. 1, no. 6, pp. 459-469, Dec. 2007. https://doi.org/10.1049/iet-rsn:20060160
  5. N. K. Ibrahim, R. S. A. Raja Abdullah, and M. I. Saripan, "Artificial neural network approach in radar target classificaion", Journal of Computer Science, vol. 5, no. 1, pp. 23-32, 2009. https://doi.org/10.3844/jcssp.2009.23.32
  6. L. Gürel, H. Bagci, J. C. Castelli, A. Cheraly, and F. Tardivel, "Validation through comparison: Measurement and calculation of the bistatic radar cross section of a stealth target", Radio Science, vol. 38, no. 3, pp. 1046-1058, Sep. 2003. https://doi.org/10.1029/2001RS002583
  7. C. Wei, W. Chang, "System level investigations of television based bistatic radar", Master Thesis, University of Cape Town, pp. 14-15, 2005.
  8. In-Sik Choi, Hyo-Tae Kim, "Efficient feature extraction from time-frequency analysis of transient response for target identification", Microwave and Optical Technology Letters, vol. 26, pp. 403-407, Sep. 2000. https://doi.org/10.1002/1098-2760(20000920)26:6<403::AID-MOP17>3.0.CO;2-3
  9. S. Chakrabarti, N. Bindal, and K. Theagharajan, "Robust radar target classifier using artificial neural network", IEEE Trans. on Neural Network, vol. 6, pp. 760-766, May 1996. https://doi.org/10.1109/72.377982

Cited by

  1. Performance Improvement of Radar Target Classification Using UWB Measured Signals vol.22, pp.10, 2011, https://doi.org/10.5515/KJKIEES.2011.22.10.981
  2. RCS Characteristic of Electromagnetic Gradient Surface Due to Incident Angle and Polarization vol.22, pp.9, 2011, https://doi.org/10.5515/KJKIEES.2011.22.9.840