• 제목/요약/키워드: Time-frequency feature extraction

검색결과 84건 처리시간 0.022초

철조망 감시를 위한 무선 센서 네트워크에서 이산 웨이블릿 변환과 동적 시간 정합 알고리즘을 이용한 특징 추출 (Feature Extraction using Discrete Wavelet Transform and Dynamic Time-Warped Algorithms in Wireless Sensor Networks for Barbed Wire Entanglements Surveillance)

  • 이태영;차대현;홍진근;한군희;황찬식
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1342-1347
    • /
    • 2010
  • 무선 센서 네트워크의 다양한 연구 분야 중에서 철조망에서의 표적의 침입 탐지 및 식별에 관한 연구는 산업시설, 보안지역, 교도소, 군사지역, 공항 등 다양한 분야에서 사용된다. 현재 철조망 감시는 대부분 유선 센서 노드를 통한 유선 센서 네트워크 환경에서 이루어지고 있다. 기존의 유선 센서 네트워크는 100bps 이상의 높은 데이터 전송률을 통해 수신되는 높은 샘플링 신호를 이용하여 고속 푸리에 변환에 의한 신호의 주파수 분석 기법을 사용해 왔다. 하지만, 유선 센서 네트워크의 높은 데이터 전송률과 비교하여 무선 센서 네트워크의 센서 노드는 유선 센서 네트워크에 비해 매우 낮은 데이터 전송률을 가진다. 따라서 무선 센서 네트워크에서 수신되는 신호의 샘플링이 매우 낮고, 유선 센서 네트워크에서 사용된 고속 푸리에 변환에 의한 신호의 주파수 분석에 따른 주파수별 특징 추출을 할 수 없다. 따라서 본 논문에서는 철조망 감시를 위한 높은 데이터 전송률을 보장하는 유선 센서 네트워크에 비해 제한된 통신자원과 센서 노드의 낮은 데이터 전송률로 인해 수신되는 한정적인 신호의 정보를 이용한 무선 센서 네트워크에서 철조망의 표적 침입 탐지 및 식별을 위한 특징 추출 알고리즘을 제안한다.

음향 표적 식별을 위한 무선 센서 네트워크에서 웨이블릿 상수를 이용한 표적 특징 추출 (Target Feature Extraction using Wavelet Coefficient for Acoustic Target Classification in Wireless Sensor Network)

  • 차대현;이태영;홍진근;한군희;황찬식
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.978-983
    • /
    • 2010
  • 무선 센서 네트워크에서 음향 표적의 식별은 환경 감시, 침입 감시, 다중 표적 분리 등에서 많이 연구된다. 무선 센서 네트워크의 센서 노드에서 사용하는 기존의 신호 처리기법은 표적으로부터 수신된 신호의 에너지를 계산하여 표적의 존재 유무만을 기지국으로 전송하는 방법과 수신 신호를 압축하여 전송하는 방법이 많이 사용되었다. 전자의 경우 표적의 감시를 위한 무선 센서 네트워크에서는 표적의 정보가 한정적이므로 적합하지 않고 후자의 경우는 센서 노드에서의 신호처리 및 전송에 소모되는 에너지가 높아 센서의 생존시간이 줄어들게 된다. 따라서 본 논문에서는 표적의 감시를 위한 무선 센서 네트워크에서 필요한 시간정보와 표적의 주파수 정보를 포함하는 센서 노드에서의 특징 추출 기법을 제안한다. 본 논문에서는 웨이블릿 변환을 이용하여 추출된 웨이블릿 상수에서 표적의 시간 정보와 잡음이 제거된 표적의 식별 정보를 추출함으로서 센서 노드에서 에너지 효율적인 신호처리를 구현하고 추출된 특징을 전송하여 통신에 소모되는 에너지를 원신호 대비 28%로 줄이는 알고리듬을 제안한다.

서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹 (Real-Time Head Tracking using Adaptive Boosting in Surveillance)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.243-248
    • /
    • 2013
  • 본 논문에서는 복잡한 배경에서의 사람의 머리 추적에 있어서 효과적인 Adaptive Boosting에 의한 방법을 제안한다. 하나의 특징 추출 방법은 사람의 머리를 모델링하기에는 부족하다. 따라서 본 연구에서는 여러 가지 특징 추출 방법을 병행하여 정확한 머리 검출을 시도하였다. 머리 영상의 특징 추출은 sub-region과 Haar 웨이블릿 변환(Haar wavelet transform)을 이용하였다. Sub-region은 머리의 지역적인 특징을 나타내고, Haar 웨이블릿 변환은 얼굴의 주파수 특성을 나타내기 때문에 이들을 이용하여 특징을 추출하면 효과적인 모델링이 가능해 진다. 실시간으로 입력되는 영상에서 사람의 머리를 추적하기 위하여 제안하는 방법에서는 3가지 형태의 Harr-wavelet 특징을 AdaBoosting 알고리즘으로 학습한 후 결과를 이용하였다. 원래 AdaBoosting 알고리즘은 학습시간이 매우 길며 학습데이터가 변하면 다시 학습을 수행해야 하는 단점이 존재한다. 이 단점을 극복하기 위하여 제안하는 방법에서는 캐스케이드를 이용한 AdaBoosting의 효율적인 학습방법을 제안한다. 이 방법은 머리 영상에 대한 학습시간은 감소시키며, 학습데이터의 변화에도 효율적으로 대처할 수 있다. 이 방법은 학습과정을 레벨별로 분리한 후 중요도가 높은 학습데이터를 다음 단계에 반복적으로 적용시킨다. 제안하는 방법이 적은 학습 시간과 학습 데이터를 사용해서 우수한 성능을 가지는 분류기를 생성하였다. 또한, 이 방법은 다양한 머리데이터를 가진 실시간 영상데이터에 적용한 결과 다양한 머리를 정확하게 검출 및 추적하였다.

신호처리 기술에 의한 부분방전 방사전자파의 특징 추출 (The Feature Extraction of Partial Discharge Electromagnetic Wave utilizing Signal Processing Techniques)

  • 이현동;이광식
    • 조명전기설비학회논문지
    • /
    • 제16권1호
    • /
    • pp.44-49
    • /
    • 2002
  • 최근 고전압 전력기기에서의 부분방전을 측정하기 위한 다양한 절연진단 기술들이 소개되었다. 부분방전 신호는 아주 미약하고 주변환경의 여러잡음에 쉽게 영향을 받으므로 주위 노이즈와의 구별이 어려운 실정이다. 본 논문에서는 부분방전 검출법중 부분방전에 의해 방사되는 전자파를 안테나로 측정하는 방사전자파법을 이용하여 변전소 구내의 배경잡음과 실험실내의 모의 부분방전을 방사전자파법에 의해 측정분석하였다. 또한 간섭신호와 모의 부분방전시 방사되는 방사전자파의 특징을 추출하고, 그 인식을 위하여 웨이브렛 패킷 변환을 이용하였다. 그 결과 간섭신호와 부분방전의 특정주파수대역의 시간정보 특징으로 그 차이를 구별할 수 있었다.

교류 고전압 방전에 의한 방사 전자파의 시간 영역 특징 추출에 관한 연구 (A Study on the time domanin feature extraction of EM radiation wave due to high AC voltage discharge)

  • 강대수;임승각
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.41-45
    • /
    • 2008
  • 교류 전원이 인가된 절연체가 열화되면 방전에 의한 방사 전자파는 주기성을 갖는 특징적 발생시간 분포를 보인다. 이러한 분포의 특징을 최적으로 분별하기 위해 방사전자파의 수신 주파수 및 수신 대역폭을 결정하기 위한 실험을 하였다. 방사전자파의 스펙트럼은 발생대역은 넓지만 시변 특징을 가지므로 수신 주파수보다는 수신 대역폭이 수신기의 성능에 영향을 미치고 적어도 900kHz 이상의 수신 대역폭이 요구된다.

  • PDF

DFT와 웨이블렛을 이용한 유도전동기 고장진단 (Fault Diagnosis of Induction Motors by DFT and Wavelet)

  • 권만준;이대종;박성무;전명근
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.819-825
    • /
    • 2007
  • 본 논문에서는 DFT(Discrete Fourier Transform)과 웨이블렛을 이용한 고장진단 알고리즘을 제안한다. 제안된 방법은 주파수 기반의 DFT에 의한 고장패턴의 추출방법과 시간-주파수 기반의 웨이블렛을 이용한 고장패턴의 추출방법을 이용하여 특징점을 추출하였으며, 유도전동기의 최종진단은 DFT와 웨이블렛에 의해 추출된 특징값들을 효과적으로 융합할 수 있는 융합 알고리즘에 의해 수행한다. 개발된 알고리즘은 다양한 실측 데이터에 적응하여 그 타당성을 보였다.

신경회로망을 이용한 철도레일 용접부의 건전성평가 (The Integrity Evaluation of weld zone in railway rails Using Neural Network)

  • 윤인식;임미섭
    • 한국철도학회논문집
    • /
    • 제6권2호
    • /
    • pp.81-86
    • /
    • 2003
  • This study proposes the neural network simulator for the integrity evaluation of weld zone in railway rails. For these purposes, the ultrasonic signals for defects(crack) of weld zone in frames are acquired in the type of time series data and echo strength. The detection of the natural defects in railway truck is performed using the characteristics of echodynamic pattern in ultrasonic signal. And then their applications evaluated feature extraction based on the time-frequency-attractor domain(peak to peak, rise time, rise slope, fall time, fall slope, pulse duration, power spectrum, and bandwidth) and attractor characteristics (fractal dimension and attractor quadrant) etc. The constructed neural network simulator agrees fairly well with the measured results of test block(defect location, beam propagation distance, echo strength, etc). The Proposed neural network simulator in this study can be used for the integrity evaluation of weld zone in railway rails.

뉴로-퍼지 신경망 기반 최적의 HRV특징을 이용한 우울증진단 알고리즘 (Neuro-Fuzzy Network-based Depression Diagnosis Algorithm Using Optimal Features of HRV)

  • 장진흥;전설위;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문은 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership functions, NEWFM)과 심박수 변이도(Heart Rate Variability, HRV)를 이용하여 우울증 진단알고리즘을 제안하고 있다. 본 알고리즘에서 사용할 NEWFM의 입력특징을 추출하기 위해서 주파수도메인 특징추출, 시간도메인 특징추출, 웨이블릿변환 특징추출, 포인케어변환 특징추출 방법을 이용하여 22개의 초기 HRV 특징들을 추출하였다. 또한 NEWFM에서 제공하는 비중복면적 분산측정법 (Non-overlap Area Distribution Measurement, NADM)에 의해 입력특징의 중요도를 평가하여 22개의 초기특징으로부터 중요도가 가장 높은 6개 최적입력특징을 선택하였다. 이 6개 특징을 이용하여 우울증을 진단한 결과는 95.8% 의 정확도를 나타내었다.

2차원 GFRC절삭에서 AR모델링에 관한 연구 (Autoregressive Modeling in Orthogonal Cutting of Glass Fiber Reinforced Composites)

  • Gi Heung Choi
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.88-93
    • /
    • 2001
  • 본 연구에서는 복합소재인 GFRP(Glass Fiber Reinforced Polyester)의 2차원 절삭공정에서 절삭 메커니즘과 소재의 신뢰도 및 안전성과 밀접한 관련이 있는 표면정도를 중심으로 한 공정의 특성화를 시도하고, 주파수 분석에 관하여도 논의한다. 구체적으로는, 공정중 발생하는 절삭력 신호를 AR(Autoregressive) 모델링하여 해석에 사용한다. 특히, 특징추출과정을 통해 AR계수로 이루어진 패턴벡터 중 다양한 절삭 메카니즘에 민감한 계수만 선택할 수 있다. 이들 계수와 절삭 메커니즘과의 실험적 관계를 설정함으로써 섬유경사각(Fiber orientation angle), 절삭 변수 그리고 공구형상이 절삭 메커니즘에 미치는 영향을 평가하였다.

  • PDF

역전달 신경회로망을 이용한 심전도 신호의 패턴분류에 관한 연구 (ECG Pattern Classification Using Back Propagation Neural Network)

  • 이제석;이정환;권혁제;이명호
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.67-75
    • /
    • 1993
  • ECG pattern was classified using a back-propagation neural network. An improved feature extractor of ECG is proposed for better classification capability. It is consisted of preprocessing ECG signal by an FIR filter faster than conventional one by a factor of 5. QRS complex recognition by moving-window integration, and peak extraction by quadratic approximation. Since the FIR filter had a periodic frequency spectrum, only one-fifth of usual processing time was required. Also, segmentation of ECG signal followed by quadratic approximation of each segment enabled accurate detection of both P and T waves. When improtant features were extracted and fed into back-propagation neural network for pattern classification, the required number of nodes in hidden and input layers was reduced compared to using raw data as an input, also reducing the necessary time for study. Accurate pattern classification was possible by an appropriate feature selection.

  • PDF