• Title/Summary/Keyword: Time-Reversal

Search Result 259, Processing Time 0.021 seconds

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Effect of Stabilizing Reversal Technique of Proprioceptive Neuromuscular Facilitation and Taping Convergence on Wrist Pain and Grip Strength (고유수용성신경근촉진법의 안정적 반전기법과 테이핑 융합이 손목통증과 악력에 미치는 영향)

  • Kim, Beom-Ryong;Yi, Dong-Hyun;Yim, JongEun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.117-124
    • /
    • 2018
  • This study investigated the effect of wrist taping (WT) after application of stabilizing reversal technique (SRT) of proprioceptive neuromuscular facilitation (PNF) on pain and grip strength (GS) in patients with wrist pain (WP). Twenty patients with WP were randomly assigned to an experimental group (n=10) that received WT after application of SRT, and a control group (n=10) that received WT after application of stretching. The total intervention time consisted of a maximum of 10 minutes including breaks, and was performed 5 times a week for 2 weeks. Pain reduction was measured using a visual analogue scale. GS was measured using a dynamometer. Within group changes in pain and GS were significant in both experimental and control groups (p<0.01). Between group changes in pain and GS were greater in the experimental group than in the control group (p<0.01). This findings indicate that SRT of PNF and WT convergence can be an effective intervention for patients with WP. Continued development of convergence interventions for patients with WP various conditions in practice, is suggested.

On an Apparatus of Visualization for Magnetic Reversal and Magnetic Stripes (자기역전 시각화 장치와 지자기띠에 대하여)

  • Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.85-88
    • /
    • 2016
  • The new rocks of the oceanic crust, like basalt, are created in the mid-oceanic ridge, and the magnetic polarities of the rocks are supposed to be oriented as following the Earth's magnetic field. An extensive magnetic survey of total field at sea level reveals mainly unusual north-south magnetic stripes parallel to the axis of the mid-oceanic ridge, especially in the Atlantic Ocean. From this stripes the Earth's magnetic field is considered as repeatedly 'flipped'(the N pole becoming the S pole, and vice versa) and many times over geological time. The discovery of stripes of alternately normal and reversed-magnetized rocks forming the ocean floor has been a key evidence for the sea-floor spreading, continental drift, and plate tectonics. This study introduces a simple apparatus to explain a possible mechanism of the magnetic reversal in the new oceanic crust, which makes a magnetic stripe adjacent to the mid-oceanic ridge. The apparatus shows a bar magnet effect of adjoined stripes to have a special magnetic polarity on the rocks in the center of the mid-oceanic ridge. The new magnetic stripe seems to be generated not only by Earth's magnetic field, but also by neighbored stripes in the mid-oceanic ridge, acting as a bar magnet.

EFFECT OF ADMINSTRATION METHOD OF FLUMAZENIL ON THE PLASMA CONCENTRATION AND THE REVERSAL OF SEDATION INDUCED BY MIDAZOLAM (Flumazenil의 투여 방법에 따른 혈장내 농도와 midazolam에 의해 유도된 진정 상태의 환원 효과)

  • Park, Seong-Kyu;Lee, Sang-Ho;Lee, Chang-Seop;Lee, Nan-Young;Oh, You-Hyang
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.499-508
    • /
    • 2005
  • The purpose of this study were to evaluate the effect on the reversion of sedation induced by midazolam with flumazenil and to determine the plasma concentration of flumazenil according to the method of administration. Intranasal and intravenous flumazenil were administered to sedated health volunteers aged from 23 to 25 years, in doses typical of those used clinically to induce sedation with midazolam and for reversal with flumazenil. Objective assessment for degree of sedation and vital signs, plasma concentration were made for 2 hours period. 1. Systolic and diastolic blood pressure, $SpO_2$ were not changed by adminstration of flumazenil in sedated subject with midazolam, but pulse rate was increased temporarily. 2. Flumazenil showed the reversal of the sedative effect induced by midazolam regardless of administration methods. But intravenous administration showed more effect on the degree and the duration of reversion than intranasal administration with the exception of on set time. 3. Peak plasma concentration of flumazenil administered by intranasal route reached after 2 min and that of flumazenil administered by intravenous route was 4 min. Thus uptake of flumazenil did not showed any difference in accordance with the adminstration route. 4. Administration of flumazenil resulted in the temporary increase of midazolam plasma concentration.

  • PDF

Effect of Metabolic Inhibition on Inward Rectifier K Current in Single Rabbit Ventricular Myocytes (토끼 단일 심근세포에서 대사억제시 Inward Rectifier$(I_{K1})$의 변화)

  • Chung, Yu-Jeong;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.741-748
    • /
    • 1997
  • In the present study, we have investigated the effect of metabolic inhibition on the inward rectifier K current ($I_{K1}$). Using whole cell patch clamp technique we applied voltage ramp from +80 mV to -140 mV at a holding potential of -30 mV and recorded the whole cell current in single ventricular myocytes isolated from the rabbit heart. The current-voltage relationship showed N-shape (a large inward current and little outward current with a negative slope) which is a characteristic of $I_{K1}$. Application of 0.2 mM dinitrophenol (DNP, an uncoupler of oxidative phosphorylation as a tool for chemical hypoxia) to the bathing solution with the pipette solution containing 5 mM ATP, produced a gradual increase of outward current followed by a gradual decrease of inward current with little change in the reversal potential (-80 mV). The increase of outward current was reversed by glibenclamide ($10\;{\mu}M$), suggesting that it is caused by the activation of $K_{ATP}$. When DNP and glibenclamide were applied at the same time or glibenclamide was pretreated, DNP produced same degree of reduction in the magnitude of the inward current. These results show that metabolic inhibition induces not only the increase of $K_{ATP}$ channel but also the decrease of $I_{K1}$. Perfusing the cell with ATP-free pipette solution induced the changes very similar to those observed using DNP. Long exposure of DNP (30 min) or ATP-free pipette solution produced a marked decrease of both inward and outward current with a significant change in the reversal potential. Above results suggest that the decrease of $I_{K1}$ may contribute to the depolarisation of membrane potential during metabolic inhibition.

  • PDF

Paleomagnetic Study on the Volcanic and Sedimentary Rocks of Jeju Island (제주도(濟州道)에 분포(分布)하는 화산암류(火山岩類) 및 퇴적암류(堆積岩類)에 대(對)한 고지자기(高地磁氣) 연구(硏究))

  • Min, Kyung Duck;Won, Joong Sun;Hwang, Suk Yeon
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.153-163
    • /
    • 1986
  • Paleomagnetic and geological studies of volcanic and sedimentary rocks of Jeju Island have been carried out to determine the position of virtual geomagnetic pole(VGP), and to estimate the geological sequence and their age. As a result of paleomagnetic studies, the reversal polarities are measured in the Sanbangsan trachyte and Hwasun formation, and the normal are the rest. In case of normal polarity, the mean values of declination and inclination are $2.3^{\circ}$ and $48.4^{\circ}$, respectively, and the average value of VGP is $85.4^{\circ}N$ and $79.9^{\circ}W$. The locations of VGP's are coincident with those obtained from world-wide Plio-Pleistocene rocks. The Hwasun formation and Seongsan formation which have been known to be sedimented in the similar time in the 2nd-stage of volcanic eruption, possess reversal and normal polarities, respectively. This fact brings about the result that two formations should be separated in a sense of geological sequence. Consequently, the geological sequence of the 2nd-stage of volcanic eruption is Pyoseonri basalt-Seoguipo hawaiite-Hwasun formation-Seongsan formation-Jungmun hawaiite-Sanbangsan trachyte. Referring to the paleomagnetic studies and the previous and present geological studies, Seoguipo formation corresponds to the Gauss normal epoch, the 2nd-stage of volcanic eruption to Matuyama reversed epoch, and the 3rd-, 4th-, and 5th-stages to Brunhes normal epoch. Therefore, the Seoguipo formation is mostly sedimented during late Pliocene and/or presumably extended to the early Pleistocene. The rocks of the 2nd- to 5th-stage are formed later than this.

  • PDF

Current Mechanistic Approaches to the Chemoprevention of Cancer

  • Steele, Vernon E.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.78-81
    • /
    • 2003
  • The prevention of cancer is one of the most important public health and medical practices of the $21^{st}$ century. We have made much progress in this new emerging field, but so much remains to be accomplished before widespread use and practice become common place. Cancer chemoprevention encompasses the concepts of inhibition, reversal, and retardation of the cancer process. This process, called carcinogenesis, requires 20-40 years to reach the endpoint called invasive cancer. It typically follows multiple, diverse and complex pathways in a stochastic process of clonal evolution. These pathways appear amenable to inhibition, reversal or retardation at various points. We must therefore identify key pathways in the evolution of the cancer cell that can be exploited to prevent this carcinogenesis process. Basic research is identifying many genetic lesions and epigenetic processes associated with the progression of precancer to invasive disease. Many of these early precancerous lesions favor cell division over quiescence and protect cells against apoptosis when signals are present. Many oncogenes are active during early development and are reactivated in adulthood by aberrant gene promoting errors. Normal regulatory genes are mutated, making them insensitive to normal regulatory signals. Tumor suppressor genes are deleted or mutated rendering them inactive. Thus there is a wide range of defects in cellular machinery which can lead to evolution of the cancer phenotype. Mistakes may not have to appear in a certain order for cells to progress along the cancer pathway. To conquer this diverse disease, we must attack multiple key pathways at once for a predetermined period of time. Thus, agent combination prevention strategies are essential to decrease cancer morbidity. Furthermore, each cancer type may require custom combination of prevention strategies to be successful.

Characteristic of $LiNbO_3$ Domain Inversion and Fabrication of Electrooptic Device Application using Domain Reversal ($LiNbO_3$ 기판의 도메인 반전 특성과 이를 이용한 기능성 광변조기의 제작)

  • Jeong, W.J.;Kim, W.K.;Yang, W.S.;Lee, H.M.;Kwon, S.W.;Song, M.K.;Lee, H.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.20-25
    • /
    • 2007
  • The periodic domain-inversion in the selective areas of $Ti:LiNbO_3$ Mach-Zender waveguides was performed and band-pass modulators and single sideband (SSB) modulators were fabricated by using domain-reversal. The domain wall velocity was precisely controlled by real-time analysis of a poling-induced response current under an applied voltage. The domain wall velocity was significantly affected by the crystal orientation of the domain wall propagation which influenced the final domain geometry. In a certain case, the decomposition of $LiNbO_3$ crystal was observed, for example, under the condition of too fast domain wall propagation. The fabricated band-pass modulator with a periodic domain-inversion structure showed the maximum modulation efficiency at 30.3 GHz with 5.1 GHz 3dB-bandwidth, and SSB modulator was measured to show 33 dB USB suppression over LSB at 5.8 GHz RF.

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.