DOI QR코드

DOI QR Code

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution

수용액으로부터 질산성질소 제거를 위한 기술

  • Seo, Yang Gon (Department of Chemical Engineering/ERI, Gyeongsang National University) ;
  • Jung, Se Yeong (Changnyeong-gun Development Corporation)
  • Received : 2017.01.11
  • Accepted : 2017.02.01
  • Published : 2017.03.31

Abstract

At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

높은 농도의 질산염을 포함하는 물은 인간의 건강을 위협하고 부영양화의 원인이 되기 때문에 제한 농도 이하로 처리되어야 한다. 그러나 질산염은 수용액에서의 높은 용해도로 인해 응집, 여과 및 침전과 같은 일반적인 처리공정으로는 제거가 거의 불가능하다. 따라서 흡착, 이온교환, 역삼투, 탈질과 전기투석과 같은 다른 기술이 질산염의 효과적인 제거를 위해 요구된다. 이들 각 기술은 비용, 수질 개선 정도, 잔류물 처리와 전처리 요구와 같은 인자의 비중에 따라 장점과 단점과 가능성을 가지고 있다. 흡착은 가격 효율성, 운전의 용이성과 설계의 간편성으로 가장 보편적으로 사용되는 공정이다. 흡착제의 표면개질은 질산이온 흡착능력을 개선하였다. 역전 전기투석과 역삼투의 질산-선택 멤브레인 공정은 수용액 중의 질산이온 제거에 오랜 동안 많은 지역에서 효과적임이 증명되었다. 두 기술은 높은 농도의 폐기물을 생성하고 이것의 신중한 처분이 필요하다.

Keywords

References

  1. Cammargo, J. A., and Alonso, A., "Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment," Environ. Int., 32, 831-849 (2006). https://doi.org/10.1016/j.envint.2006.05.002
  2. Fewtrell, L, "Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion," Environ. Health Perspect., 112, 1371-1374 (2004). https://doi.org/10.1289/ehp.7216
  3. Chiu, H., Tsai, S., and Yang, C., "Nitrate in Drinking Water and Risk of Death from Bladder Cancer: An Ecological Case-Control Study in Taiwan," J. Toxicol. Environ. Health Part A, 70, 1000-1004 (2007). https://doi.org/10.1080/15287390601171801
  4. http://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants (accessed Dec. 2016).
  5. http://oneclick.law.go.kr/CSP/CnpClsMain.laf?csmSeq=536&ccfNo=2&cciNo=1&cnpClsNo=1 (accessed Dec. 2016).
  6. WHO, Guidelines for Drinking Water Quality, 4th ed. World Health Organization (2011).
  7. National Health and Medical Research Council, "Australian Drinking Water Guidelines 6" ver. 3.2, Commonwealth of Australia, Canberra (2016).
  8. Ministry of Environment, "White Paper of Environment," 57-72 (1997).
  9. Ministry of Environment, "Fundamental Plan of Water Environmental Management: Fundamental Plan of Water Quality Protection in the Four Major Rivers ('06-'15)," 179-190 (2006).
  10. Ministry of Environment, "White Paper of Environment," 241-306 (2015).
  11. Islam, M., Mishra, P. C., and Patel, R., "Physicochemical Characterisation of Hydroxyapatite and Its Application Towards Removal of Nitrate from Water," J. Environ. Manage., 91, 1883-1891 (2010). https://doi.org/10.1016/j.jenvman.2010.04.013
  12. Carroll, S. B., and Salt, S. D., Ecology for Gardeners, Timber Press, Portland, USA (2004).
  13. Nam, Y. H., An, S. W., and Park, J. W., "Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and $N_2O$ Emission," J. Korean Soc. Environ. Eng., 33(2), 103-112 (2011). https://doi.org/10.4491/KSEE.2011.33.2.103
  14. Nam, Y. H., An, S. W., Jung, M. S., and Park, J. W., "Nitrogen Budget of Agriculture and Livestock in South Korea 2010," J. Korean Soc. Environ. Eng., 34(3), 204-213 (2012). https://doi.org/10.4491/KSEE.2012.34.3.204
  15. Shin, J. H., Yoo, C. W., An, S. W., and Park, J. W., "2011 Nitrogen Budget of South Korea Including Nitrogen Oxides in Gas Phase," J. Korean Soc. Environ. Eng., 36(2), 75-83 (2014). https://doi.org/10.4491/KSEE.2014.36.2.75
  16. Kapoor, A., and Viraraghavan, T., "Nitrate Removal from Drinking Water-Review," J. Environ. Eng., 123, 371-380 (1977).
  17. Bhatnagar, A., and Sillanpaa, M., "A Review of Emerging Adsorbents for Nitrates Removal from Water," Chem. Eng. J., 168, 493-504 (2011). https://doi.org/10.1016/j.cej.2011.01.103
  18. Choi, K. O., Seo, S. J., and Ko, S., "Nitrate Reduction Technologies for Safe Groundwater Drinking," Food Eng. Prog., 18(1), 36-41 (2014). https://doi.org/10.13050/foodengprog.2014.18.1.36
  19. Moreno-Castilla, C., "Adsorption of Organic Molecules from Aqueous Solutions on Carbon Materials," Carbon, 42, 83-94 (2004). https://doi.org/10.1016/j.carbon.2003.09.022
  20. Yang, R. T., "Adsorbents Fundamentals and Applications," John Wiley and Sons, New Jersey, USA (2003).
  21. Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., Lee, G., Suk, H., Kim, H. S., Min, B., Kim, S. H., Jeon, B. H., and Kang, J. W., "Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon," Sep. Sci. Technol., 43(4), 886-907 (2008). https://doi.org/10.1080/01496390701787461
  22. Loganathan, P., Vigneswaran, S., and Kandasamy, J., "Enhanced Removal of Nitrate from Water Using Surface Modification of Adsorbents-Review," J. Environ. Manag., 131, 363-374 (2013). https://doi.org/10.1016/j.jenvman.2013.09.034
  23. Mizuta, A., Matsumoto, T., Hatata, Y., Nishihara, K., and Nakanishi, T., "Removal of Nitrate-Nitrogen from Drinking Water using Bamboo Powder Charcoal," Bioresour. Technol., 95, 255-257 (2004). https://doi.org/10.1016/j.biortech.2004.02.015
  24. Mishra, P. C., and Patel, R. K., "Use of Agricultural Waste for the Removal of Nitrate-Nitrogen from Aqueous Medium," J. Environ. Manag., 90, 519-522 (2009). https://doi.org/10.1016/j.jenvman.2007.12.003
  25. Demiral H., and Gunduzoglu, G., "Removal of Nitrate from Aqueous Solutions by Activated Carbon Prepared from Sugar Beet Bagasse," Bioresour. Technol., 101, 1675-1680 (2010). https://doi.org/10.1016/j.biortech.2009.09.087
  26. Ohe, K., Nagae, Y., Nakamura, S., and Baba, Y., "Removal of Nitrate Anion by Carbonaceous Materials Prepared from Bamboo and Coconut Shell," J. Chem. Eng. Japan, 36, 511-515 (2003). https://doi.org/10.1252/jcej.36.511
  27. Afkhami, A., Madrakian, T., and Karimi, Z., "The Effect of Acid Treatment of Carbon Cloth on the Adsorption of Nitrite and Nitrate Ions," J. Hazard. Mater., 144, 427-431 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.062
  28. Khan, M. A., Ahn, Y. T., Kumar, M., Lee, W., Min, B., Kim, G., Cho, D. W., Park, W. B., and Jeon, B. H., "Adsorption Studies for the Removal of Nitrate Using Modified Lignite Granular Activated Carbon," Sep. Sci. Technol., 46, 2575-2584 (2011). https://doi.org/10.1080/01496395.2011.601782
  29. Tofighy, M. A., and Mohammadi, T., "Nitrate Removal from Water Using Functionalized Carbon Nanotube Sheets," Chem. Eng. Res. Des., 90, 1815-1822 (2012). https://doi.org/10.1016/j.cherd.2012.04.001
  30. Chatterjee, and Woo, S. H., "The Removal of Nitrate from Aqueous Solutions by Chitosan Hydrogel Beads," J. Hazard. Mater., 164, 1012-1018 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.001
  31. Chatterjee, S., Lee, D. S., Lee M. W., and Woo S. H., "Nitrate Removal from Aqueous Solutions by Cross-linked Chitosan Beads Conditioned with Sodium Bisufate," J. Hazard. Mater., 166, 508-513 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.045
  32. Cengeloglu, Y., Tor, A., Ersoz, M., and Arslan, G., "Removal of Nitrate from Aqueous Solution by Using Red Mud," Sep. Purif. Technol., 51, 374-378 (2006). https://doi.org/10.1016/j.seppur.2006.02.020
  33. Ozturk, N., and Bekta, T. E., "Nitrate Removal from Aqueous Solution by Adsorption onto Various Materials," J. Hazard. Mater., B112, 155-162 (2004).
  34. Ozcan, A., Sahin, M., and Ozcan, A. S., "Adsorption of Nitrate Ions onto Sepiolite and Surfactant-Modified Sepiolite," Adsor. Sci. Technol., 23, 323-333 (2005). https://doi.org/10.1260/0263617054769987
  35. Hamoudi, S., Saad, R., and Belkacemi, K., "Adsorptive Removal of Phosphate and Nitrate Anions from Aqueous Solutions Using Ammonium-Functionalized Mesoporous Silica," Ind. Eng. Chem. Res., 46, 8806-8812 (2007). https://doi.org/10.1021/ie070195k
  36. Arora, M., Eddy, N. K., Mumford, K. A., Baba, Y., Perera, J. M., and Stevens, G. W., "Surface Modification of Natural Zeolite by Chitosan and Its Use for Nitrate Removal in Cold Regions," Cold Reg. Sci. Technol., 62, 92-97 (2010). https://doi.org/10.1016/j.coldregions.2010.03.002
  37. Onyango, M., Masukume, M., Ochieng, A., and Otieno, F., "Functionalised Natural Zeolite and Its Potential for Treating Drinking Water Containing Excess Amount of Nitrate," Water SA, 36, 655-662 (2010).
  38. Xi, Y., Mallavarapu, M., and Naidu, R., "Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption," Appl. Clay Sci., 48, 92-96 (2010). https://doi.org/10.1016/j.clay.2009.11.047
  39. Selium, M. K., Komarnemi, S., Byrne, T., Cannon, F. S., Shahien M. G., Khalil, A. A., and Abd El-Gaid, I. M., "Removal of Nitrate by Synthesis Organosilicaa and Organoclay: Kinetic and Isotherm Studies," Sep. Purif. Technol., 110, 181-187 (2013). https://doi.org/10.1016/j.seppur.2013.03.023
  40. Aghaii, M. D., Pakizeh, M., and Ahmadpour, A., "Synthesis and Characterization of Modified UZM-5 as Adsorbent for Nitrate Removal from Aqueous Solution," Sep. Purif. Technol., 113, 24-32 (2013). https://doi.org/10.1016/j.seppur.2013.04.013
  41. Bhardwaj, D., Sharma, M., Sharma, P., and Tomar, R., "Synthesis and Surfactant Modification of Clinoptilolite and Montmorillonite for the Removal Nitrate and Preparation of Slow Release Nitrogen Fertilizer," J. Hazard. Mater., 227-228, 292-300 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.058
  42. Yin, C. Y., Aroua, M. K., and Daud, W. M. A. W., "Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions," Sep. Purif. Technol., 52(3), 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
  43. Wang, S., Ang, H. M., and Tade, M. O., "Novel Applications of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Processes," Chemosphere, 72, 1621-1635 (2008). https://doi.org/10.1016/j.chemosphere.2008.05.013
  44. Le Cloirec, P., "Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compounds (VOCs): A Specific Review," Chin. J. Chem. Eng., 20(3), 461-468 (2012). https://doi.org/10.1016/S1004-9541(11)60207-3
  45. Rengel-Mendez, J. R., and Streat, M., "Adsorption of Cadmiun by Activated Carbon Cloth: Influence of Surface Oxidation and Solution pH," Water Res., 36, 1244-1252 (2002). https://doi.org/10.1016/S0043-1354(01)00343-8
  46. Loganathan, P., Vigneswaran, S., Kandasamy, J., and Naidu, R., "Cadmium Sorption and Desorption in Soils: A Review," Crit. Rev. Environ. Sci. Technol., 42, 489-533 (2012). https://doi.org/10.1080/10643389.2010.520234
  47. Namasivayam, C., and Sangeetha, D., "Removal of Nitrate from Water by $ZnCl_2$ Activated Carbon from Coconut Coir Pith, an Agricultural Soil Waste," Indian J. Chem. Technol., 12, 513-521 (2005).
  48. Namasivayam, C., and Sangeetha, D., "Application of Coconut Coir Pith for the Removal of Sulphate and Other Anions from Water," Desalination, 219, 1-13 (2008). https://doi.org/10.1016/j.desal.2007.03.008
  49. Hassan, M. L., Kassem, N. F., and El-Kader, A. H. A., "Novel Zr(IV) Sugar Beet Pulp Composite for Removal of Sulphate and Nitrate Anions," J. Appl. Polym. Sci., 117, 2205-2212 (2010). https://doi.org/10.1002/app.32063
  50. Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M., "Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate from Aqueous Solutions," Chem. Eng. J., 210, 26-32 (2012). https://doi.org/10.1016/j.cej.2012.08.052
  51. Kookana, R. S., Samah, A. K., van Zweeten, L., Knull, E., and Singh, B., "Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences," Adv. Agron., 112, 103-143 (2011).
  52. Orlando, U. S., Baes, A. U., Nishijima, W., and Okada, M., "A New Procedure Lignocellulosic Anion Exchangers from Agricultural Waste Materials," Biosour. Technol., 83, 195-198 (2002). https://doi.org/10.1016/S0960-8524(01)00220-6
  53. Orlando, U. S., Baes, A. U., Nishijima, W., and Okada, M., "Preparation of Agricultural Residue Anion Exchangers and Its Nitrate Maximum Adsorption Capacity," Chemosphere, 48, 1041-1046 (2002). https://doi.org/10.1016/S0045-6535(02)00147-9
  54. Katal, R., Baei, M. S., Rahmati, H. T., and Esfandian, H., "Kinetic Isotherm and Thermodynamic Study of Nitrate Adsorption from Aqueous Solution Using Modified Rice Husk," J. Ind. Eng. Chem., 18, 295-302 (2012). https://doi.org/10.1016/j.jiec.2011.11.035
  55. Bowman, R. S., "Applications of Surfactant-Modified Zeolites to Environmental Remediation," Microporous Mesoporous Mater., 61, 43-56 (2006).
  56. Haggerty, G. M., and Bownam, R. S., "Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite," Environ. Sci. Technol., 28, 452-458 (1994). https://doi.org/10.1021/es00052a017
  57. Masukume, C., Eskangarpour, A., Onyango, M. S., Ochieng, A., and Otieno, F., "Treating High Nitrate Groundwater Using Surfactant Modified Zeolite in Fixed Bed Column," Sep. Sci. Technol., 46, 1131-1137 (2011). https://doi.org/10.1080/01496395.2010.551246
  58. Islam, M., and Patel, R., "Physicochemical Characterization and Adsorption Behaviour of Ca/Al Chloride Hydrotalcite-Like Compound Towards Removal of Nitrate," J. Hazard. Mater., 190, 120-128 (2011).
  59. Socias-Viciana, M. M., Urena-Amate, M. D., Gonzalez-Pradas, E., Garcia-Cortes, M. J., and Lopez-Teruel, C., "Nitrate Removal by Calcined Hydrotacite-Type Compounds," Clays Clay Min., 56, 2-9 (2008). https://doi.org/10.1346/CCMN.2008.0560101
  60. Helfferich, F. G., Ion Exchange, Dover Publications, New York, USA (1995).
  61. Liang, S., Mann, M. A., Guter, G. A., Kim, P. H., and Hardan, D. L., "Nitrate Removal from Contaminated Groundwater," J. Am. Water Works Ass., 91(2), 79-91 (1999).
  62. Darbi, A., Viraraghavan, T., Butler, R., and Corkal, D., "Pilot-Scale Evaluation of Select Nitrate Removal Technologies," J. Environ. Sci. Health, A38(9), 1703-1715 (2003).
  63. Samatya, S., Kabay, N., Yuksel, U., Arda, M., and Yuksel, M., "Removal of Nitrate from Aqueous Solutions by Nitrate Selective Ion Exchange Resins," React. Funct. Polym., 66 (11), 1206-1214 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.03.009
  64. Buelow, R. W., Jropp, K. L., Withered, J., and Symons, J. M., "Nitrate Removal by Anion-Exchange Resins," J. Am. Water Works Ass., 67(9), 528-534 (1975). https://doi.org/10.1002/j.1551-8833.1975.tb02288.x
  65. Dore, M., Simon, P. H., Deguin, A., and Victot, J., "Removal of Nitrate in Drinking Water by Ion-Exchange-Impact on the Chemical Quality of Treated Water," Water Res., 20(2), 221-232 (1986). https://doi.org/10.1016/0043-1354(86)90012-6
  66. Kim, J., and Benjamin, M. M., "Modeling a Novel Ion Exchange Process for Arsenic and Nitrate Removal," Water Res, 38(8), 2053-2062 (2004). https://doi.org/10.1016/j.watres.2004.01.012
  67. Bergman, R., Reverse Osmosis and Nanofiltartion, American Water Works Association, Denver, USA (2007).
  68. Symons, J. M., Bradley, L. C., and Cleveland, T. C., The Drinking Water Dictionary, American Water Works Association, McGraw-Hill, New York, USA (2001).
  69. Elyanow, D., and Presechino, J., "Advanced in Nitrate Removal," GE Water and Process Technologies, Report No. TP-1033EN 0601 (2005).
  70. Soares, M. I. M., "Biological Denitrification of Groudwater," Water Air Soil Pollut., 123, 183-193 (2000). https://doi.org/10.1023/A:1005242600186
  71. Shrimali, M., and Singh, K. P., "New Methods of Nitrate Removal from Water," Environ. Pollut., 112(3), 351-359 (2001). https://doi.org/10.1016/S0269-7491(00)00147-0
  72. Hiscook, K. M., Lloyd, J. M., and Lerner, D. N., "Review of Natural and Artificial Denitrification of Groudwater," Water Res., 25(9) 1099-1111 (1991). https://doi.org/10.1016/0043-1354(91)90203-3
  73. Haugen, K. S., Semmens, M. J., and Novak, P. J., "A Novel in situ Technology for the Treatment of Nitrate Contaminated Groundwater," Water Res., 36(14), 3497-3506 (2002). https://doi.org/10.1016/S0043-1354(02)00043-X
  74. Luk, G. K., and Au-Yeung, W. C., "Experimental Investigation on the Chemical Reduction of Nitrate from Groundwater," Adv. Environ. Res., 6(4), 441-453 (2002). https://doi.org/10.1016/S1093-0191(01)00072-7
  75. Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., "Reduction of Nitrate to Ammonia by Zero-Valent Iron," Chemosphere, 35(11), 2689-2695 (1997). https://doi.org/10.1016/S0045-6535(97)00275-0
  76. Kumar, M., and Chakraborty, S., "Chemical Denitrification of Water by Zero-Valent Magnesium Powder," J. Hazard. Mater., 135, 112-121 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.031
  77. Rautenbach, R., Kopp, W., Opbergen, G., and Hellekes, R., "Nitrate Reduction of Well Water by Reverse Osmosis and Electrodialysis-Studies on Plant Performance and Costs," Desalination, 65, 241-258 (1987). https://doi.org/10.1016/0011-9164(87)90137-8
  78. Eyal, A., and Kedem, O., "Nitrate-Selective Anion-Exchange Membranes," Desalination, 38, 101-111 (1988).

Cited by

  1. 아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구 vol.34, pp.3, 2017, https://doi.org/10.12925/jkocs.2017.34.3.487
  2. Pollutant Removals according to Media Type at the Filtration Unit with the Circulation of Suspended Media vol.41, pp.5, 2017, https://doi.org/10.4491/ksee.2019.41.5.257
  3. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2017, https://doi.org/10.1007/s11814-019-0331-x