DOI QR코드

DOI QR Code

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter

공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화

  • 엄민정 (한국해양대학교 해양공학과) ;
  • 박지성 (한국해양대학교 해양공학과) ;
  • 지윤희 (한국해양대학교 해양공학과) ;
  • 김재수 (한국해양대학교 해양공학과)
  • Received : 2013.10.04
  • Accepted : 2013.11.20
  • Published : 2014.01.31

Abstract

The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.

수중음향통신은 시변동성으로 인하여 도플러 편이를 발생하고, 다중경로로 인하여 지연 확산의 특성을 갖는다. 이러한 채널 특성은 인접 심볼 간 간섭을 발생시켜 통신 성능을 저하시킨다. 통신 성능을 개선하기 위하여 시역전, 공간 다이버시티, 위상 추정기 및 등화기 등과 같은 다양한 기법이 연구되고 있다. 본 논문에서는 시변동성 다중경로로 인한 인접 심볼 간 간섭을 완화하는 방법으로 빔 형성 기반의 공간 필터 기법을 제안한다. 제안된 기법은 원하는 신호방향으로 빔을 조향하여 공간상의 신호를 분리하고, 배열 이득으로 신호 대 간섭 잡음비를 향상시키고 통신 성능을 개선한다.

Keywords

References

  1. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE 25, 4-27 (2000).
  2. A. C. Singer, J. K. Nelson, and S. S. Kozat, "Signal processing for underwater acoustic communications," in IEEE Communications Magazine, 90-96 (2009).
  3. T. Melodia, H. Kulhandjian, L. C. Kuo, and E. Demirors, Advances in underwater acoustic networking, in Mobile Ad Hoc Networking: cutting edge directions, Second Edition, (John Wiley & Sons, Inc., New Jersey, 2013).
  4. R. J. Urick, Principles of underwater sound, (McGraw-Hill, New York, 1967).
  5. M. Stojanovic, J. A. Catipovic, and J. G. Proakis, "Phasecoherent digital communications for underwater acoustic channels," IEEE 19, 100-111 (1994).
  6. J. G. Proakis, and M. Salehi, Digital Communications, (McGraw-Hill, New York, 2008).
  7. H. S. Kim, D. H. Choi, J. P. Seo, J. H. Chung, and S. Kim, "The experimental verification of adaptive equalizers with phase estimator in the East Sea," J. Acoust. Soc. Kr. 29, 229-236 (2010).
  8. G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean. Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
  9. S. E. Cho, H. C. Song, and W. S. Hodgkiss, "Asynchronous multiuser underwater acoustic communications(L)," J. Acoust. Soc. Am. 132, 5-8 (2012). https://doi.org/10.1121/1.4726029
  10. H. C. Song, W. S. Hodkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  11. H. C. Song, "Bidirectional equalization for underwater acoustic communication," J. Acoust. Soc. Am. 131, 342-347 (2012). https://doi.org/10.1121/1.3695075
  12. M. J. Eom, J. S. Park, Y. H. Ji, and J. S. Kim, "Performance improvement of an underwater acoustic communication based on spatial filter," (in Korean) in Proc. Korea Acoustics '13 32, 299-301 (2013).
  13. B. D. Van Veen and K. M. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP MAGAZINE, 4-24 (1988).
  14. M. Stojanovic, J. Catipovic, and J. G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
  15. G. S. Howe, P. S. D. Tarbit, O. R. Hinton, B. S. Sharif, and A. E. Adams, "Sub-seas acoustic remote communications utilising an adaptive receiving beamformer for multipath suppression," in Proc. Oceans '94, 313-316 (1994).
  16. M. Stojanovic, J. A. Catipovic, and J. G. Proakis, "Reduced-complexity spatial and temporal processing of underwater acoustic communication signals," J. Acoust. Soc. Am. 98, 961-972 (1995). https://doi.org/10.1121/1.413521
  17. D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing : A System Design Approach, (John Wiley & Sons, 1988).
  18. Y. C. Choi, S. G. Kim, S. M. Kim, J. W. Park, Y. K. Lim, "A study of an adaptive wideband beamformer for underwater acoustic communications," (in Korean) in Proc. Korea Acoustics '04 23, 179-182 (2004).
  19. J. R. Williams, "Fast beam-forming algorithm," J. Acoust. Soc. Am. 44, 1454-1455 (1968). https://doi.org/10.1121/1.1911285
  20. G. L. Demuth, "Frequency domain beamforming techniques," IEEE Conf. Acoust., Speech, signal Proc., 713-715 (1977).
  21. S. H. Oh, H. S. Kim, J. S. Kim, J. H. Cho, J. H. Chung, and H. C. Song, "Performance analysis of underwater acoustic communication systems using underwater channel simulation tool," (in Korean) J. Acoust. Soc. Kr. 31, 373-383 (2012). https://doi.org/10.7776/ASK.2012.31.6.373
  22. Ocean Acoustics Library, http://oalib.hlsresearch.com/Rays/index.html, 2013.

Cited by

  1. Algorithm and Experimental Verification of Underwater Acoustic Communication Based on Passive Time-Reversal Mirror vol.33, pp.6, 2014, https://doi.org/10.7776/ASK.2014.33.6.392
  2. Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.375
  3. Estimation of source signal and channel response using ray-based blind deconvolution technique for Doppler-shifted underwater channel vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.331