• Title/Summary/Keyword: Time Segmentation

Search Result 809, Processing Time 0.024 seconds

Image Segmentation Using an Extended Fuzzy Clustering Algorithm (확장된 퍼지 클러스터링 알고리즘을 이용한 영상 분할)

  • 김수환;강경진;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.35-46
    • /
    • 1992
  • Recently, the fuzzy theory has been adopted broadly to the applications of image processing. Especially the fuzzy clustering algorithm is adopted to image segmentation to reduce the ambiguity and the influence of noise in an image.But this needs lots of memory and execution time because of the great deal of image data. Therefore a new image segmentation algorithm is needed which reduces the memory and execution time, doesn't change the characteristices of the image, and simultaneously has the same result of image segmentation as the conventional fuzzy clustering algorithm. In this paper, for image segmentation, an extended fuzzy clustering algorithm is proposed which uses the occurence of data of the same characteristic value as the weight of the characteristic value instead of using the characteristic value directly in an image and it is proved the memory reduction and execution time reducted in comparision with the conventional fuzzy clustering algorithm in image segmentation.

  • PDF

A Real-time Point Cloud Ground Segmentation Study for Outdoor Autonomous Robots (실외 자율주행 로봇을 위한 실시간 Point Cloud Ground Segmentation)

  • Ji-Won Son;Hyung-Pil Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.482-483
    • /
    • 2024
  • Real-time Point Cloud Ground Segmentation은 자율주행에서 판단 및 객체 탐지/추적 등 다양한 분야에 도움을 준다. 이에 따라, Real-time Point Cloud Ground Segmentation을 했으며, 센서로는 라이다, 알고리즘으로는 TRAVEL논문을 인용했다. 또한 Real-time Point Cloud Ground Segmentation뿐 만 아니라 이동가능지형 판단(Traversability)을 하였다. 그리고 최종적으로, 위와 같은 알고리즘들을 회사 로봇(Scout Mini Robot)에 접목시켰으며 그 과정에서 TRAVEL 알고리즘내에 내제된 파라미터 값들을 최적화시키는 과정이 필요하였다. 그래서 3가지의 방법을 통해 파라미터 값을 선정한 후, 결과값을 비교 분석하였다. 연구 결과, Rellis-3D와 베이지안 최적화를 사용한 베이지안 파라미터가 최적의 파라미터임을 확인할 수 있었다.

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding (실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리)

  • 김준기;이호석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.147-161
    • /
    • 2003
  • Video object segmentation is one of the core technologies for content-based real-time MPEG-4 encoding system. For real-time requirement, the segmentation algorithm should be fast and accurate but almost all existing algorithms are computationally intensive and not suitable for real-time applications. The MPEG-4 VM(Verification Model) has provided basic algorithms for MPEG-4 encoding but it has many limitations in practical software development, real-time camera input system and compression efficiency. In this paper, we implemented the preprocessing system for real-time camera input and VOP extraction for content-based video coding and also implemented motion detection to achieve the 180 : 1 compression rate for real-time and high compression MPEG-4 encoding.

Volumetric CT Texture Analysis of Intrahepatic Mass-Forming Cholangiocarcinoma for the Prediction of Postoperative Outcomes: Fully Automatic Tumor Segmentation Versus Semi-Automatic Segmentation

  • Sungeun Park;Jeong Min Lee;Junghoan Park;Jihyuk Lee;Jae Seok Bae;Jae Hyun Kim;Ijin Joo
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1797-1808
    • /
    • 2021
  • Objective: To determine whether volumetric CT texture analysis (CTTA) using fully automatic tumor segmentation can help predict recurrence-free survival (RFS) in patients with intrahepatic mass-forming cholangiocarcinomas (IMCCs) after surgical resection. Materials and Methods: This retrospective study analyzed the preoperative CT scans of 89 patients with IMCCs (64 male; 25 female; mean age, 62.1 years; range, 38-78 years) who underwent surgical resection between January 2005 and December 2016. Volumetric CTTA of IMCCs was performed in late arterial phase images using both fully automatic and semi-automatic liver tumor segmentation techniques. The time spent on segmentation and texture analysis was compared, and the first-order and second-order texture parameters and shape features were extracted. The reliability of CTTA parameters between the techniques was evaluated using intraclass correlation coefficients (ICCs). Intra- and interobserver reproducibility of volumetric CTTAs were also obtained using ICCs. Cox proportional hazard regression were used to predict RFS using CTTA parameters and clinicopathological parameters. Results: The time spent on fully automatic tumor segmentation and CTTA was significantly shorter than that for semi-automatic segmentation: mean ± standard deviation of 1 minutes 37 seconds ± 50 seconds vs. 10 minutes 48 seconds ± 13 minutes 44 seconds (p < 0.001). ICCs of the texture features between the two techniques ranged from 0.215 to 0.980. ICCs for the intraobserver and interobserver reproducibility using fully automatic segmentation were 0.601-0.997 and 0.177-0.984, respectively. Multivariable analysis identified lower first-order mean (hazard ratio [HR], 0.982; p = 0.010), larger pathologic tumor size (HR, 1.171; p < 0.001), and positive lymph node involvement (HR, 2.193; p = 0.014) as significant parameters for shorter RFS using fully automatic segmentation. Conclusion: Volumetric CTTA parameters obtained using fully automatic segmentation could be utilized as prognostic markers in patients with IMCC, with comparable reproducibility in significantly less time compared with semi-automatic segmentation.

Digital Gray-Scale/Color Image-Segmentation Architecture for Cell-Network-Based Real-Time Applications

  • Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.670-673
    • /
    • 2002
  • This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.

  • PDF

Adaptive Image Segmentation Based on Histogram Transition Zone Analysis

  • Acuna, Rafael Guillermo Gonzalez;Mery, Domingo;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • While segmenting "complex" images (with multiple objects, many details, etc.) we experienced a need to explore new ways for time-efficient and meaningful image segmentation. In this paper we propose a new technique for image segmentation which has only one variable for controlling the expected number of segments. The algorithm focuses on the treatment of pixels in transition zones between various label distributions. Results of the proposed algorithm (e.g. on the Berkeley image segmentation dataset) are comparable to those of GMM or HMM-EM segmentation, but are achieved with significantly reduced computation time.

A Study on the Implementation of the Picture segmentation for a Real-Time Automatic Video Tracker System (실시간 자동영상 추적기를 위한 영상영역화의 구현에 관한 연구)

  • 문종환;김경수;김재희
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.186-190
    • /
    • 1986
  • This paper describes a way of implementing the segmentation of 128*128 pixel images to be used as the inputs. to a real-time automatic video tracker. The suggested method uses the lowest valley-value of the computed intensity historgram with 16 levels. This method improves smoothing effects and also significantly reduces hardware requirements. Entire segmentation process is caried out in 10msec thus making a real time application possible.

  • PDF

Realtime Human Object Segmentation Using Image and Skeleton Characteristics (영상 특성과 스켈레톤 분석을 이용한 실시간 인간 객체 추출)

  • Kim, Minjoon;Lee, Zucheul;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.782-791
    • /
    • 2016
  • The object segmentation algorithm from the background could be used for object recognition and tracking, and many applications. To segment objects, this paper proposes a method that refer to several initial frames with real-time processing at fixed camera. First we suggest the probability model to segment object and background and we enhance the performance of algorithm analyzing the color consistency and focus characteristic of camera for several initial frames. We compensate the segmentation result by using human skeleton characteristic among extracted objects. Last the proposed method has the applicability for various mobile application as we minimize computing complexity for real-time video processing.

Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach

  • Vitchaya Siripoppohn;Rapat Pittayanon;Kasenee Tiankanon;Natee Faknak;Anapat Sanpavat;Naruemon Klaikaew;Peerapon Vateekul;Rungsun Rerknimitr
    • Clinical Endoscopy
    • /
    • v.55 no.3
    • /
    • pp.390-400
    • /
    • 2022
  • Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy. Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values. Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively. Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.