
Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have 
failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model 
with inference speeds faster than 25 frames per second that maintains a high level of accuracy. 
Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four 
strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an 
image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, 
data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM 
areas in real time. The results were analyzed using different validity values. 
Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivi-
ty, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 
80%, 82%, 92%, 87%, and 57%, respectively. 
Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, 
and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation. 
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INTRODUCTION 

Gastric intestinal metaplasia (GIM) is a well-known premalig-
nant lesion and a risk factor for gastric cancer.1 Its diagnosis is 
highly challenging due to subtle mucosal changes that can be 
easily overlooked. White light endoscopy (WLE) alone, when 
observed by less experienced endoscopists, may lead to prema-
lignant lesions from normal mucosa being missed.2,3 Various 
techniques have been developed to enhance the detection rate 
of these lesions, including the multiple random biopsy protocol 
(Sydney protocol)4 and image-enhanced endoscopy (IEE), in-
cluding narrow-band imaging (NBI), blue light imaging, linked 
color imaging, iScan, and confocal laser imaging.5-7 Random bi-
opsy for histological evaluation is generally cost prohibitive. IEE 
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diagnosis entails a significant time requirement for training en-
doscopists to achieve high accuracy in GIM interpretation. Un-
like colonic polyps, segmentation of GIM is difficult to define 
because it usually has an irregular border with many scattered 
lesions. Segmentation of GIM can become very difficult and of-
ten results in poor results when performed by less experienced 
endoscopists.8 

Deep learning models (DLMs) have made dramatic entranc-
es into the field of medicine. One of the most popular research 
objectives in upper gastrointestinal (GI) endoscopy is to detect 
and segment early gastric neoplasms.9,10 Among the publicly 
available models, DeepLabV3+11 and U-Net12 are considered 
state-of-the-art DLMs for segmentation tasks. However, these 
models cannot be integrated in a real-time system that requires 
at least 25 frames per second (FPS)13; this is because of the sig-
nificant computation requirements for high-resolution images, 
which result in delays and sluggish displays of the captured ar-
eas during real-time endoscopy. 

Rodriguez-Diaz et al.14 applied DeepLabV3+ to detect colon-
ic polyps and achieve an inference speed (IFS) of only 10 FPS. 
Wang et al.15 applied DeepLabV3+ to segment gastrointestinal 
metaplasia and found that the IFS was only 12 FPS. In addition, 
Sun et al.16 employed U-Net to detect colonic polyps and reached 
a speed close to the threshold IFS (22 FPS). However, the image 
size was still relatively small (384×288 pixels) when compared 
with the much larger image in the current standard practice 
(1,920×1,080 pixels). Findings from our earlier experiments with 
U-Net revealed that the IFS was only three FPS in the current 
standard image size. In addition, the detection performances 
of many DLMs are still limited owing to the availability of only 
a handful of training GIM datasets. The suboptimal supply of 
medical images might cause low accuracy in the model, leading 
to poor practice performance. Therefore, additional techniques 
to improve DLM accuracy, including transfer learning (TL),17 im-
age enhancement, and augmentation (AUG), may be necessary. 

This study aimed to establish and implement a new DLM 
with additional techniques (TL, image enhancement, and 
AUG) that could produce a more practical real-time semantic 
segmentation with high accuracy to detect GIM during upper 
GI endoscopy. 

METHODS 

Study design and participants 
A single-center prospective diagnostic study was performed. 

We trained and tested our DLMs to detect GIM using WLE and 
NBI using data from the Center of Excellence for Innovation 
and Endoscopy in Gastrointestinal Oncology, Chulalongkorn 
University, Thailand. Informed consent for the endoscopic 
images was obtained from consecutive GIM patients aged 18 
years or older who underwent upper endoscopy under WLE 
and/or IEE between January 2016 and December 2020. We as-
signed the pathological diagnosis as a ground-truth diagnosis. 
Two pathologists from King Chulalongkorn Memorial Hospital 
made pathological assessments of specimens obtained from 
different biopsy stomach sites in at least five areas: two antrums, 
two bodies, and one incisura, according to the updated Sydney 
System. Patients with a history of gastric surgery or otherwise 
diagnosed with other gastric abnormalities such as erosive gas-
tritis, gastric ulcers, gastric cancer, high-grade dysplasia, low-
grade dysplasia, and those without a confirmed pathological 
diagnosis were excluded. 

Endoscopy and image quality control 
All images were recorded using an Olympus EVIS EXERA III 
GIF-HQ190 gastroscope (Olympus Medical Systems Corp., To-
kyo, Japan). Two expert endoscopists (RP and KT) with a mini-
mum of 5 years of experience in gastroscopy and a minimum of 
3 years of experience in IEE and had performed more than 200 
GIM diagnoses were selected to review all images. Poor-quality 
images, which consisted of halation, blur, defocus, and mucus, 
were removed. The size of the raw images was 1,920×1,080 pix-
els, and they were stored in a joint photographic expert group 
(JPEG) format. All images were cropped to show only the gas-
tric epithelium (nonendoscopic images and other labels such as 
patient information were removed), resulting in an image with 
1,350×1,080 pixels. 

Image datasets 
After the biopsy-proven GIM images were obtained, with 
unanimous agreement, two expert endoscopists (RP and KT) 
performed annotations on the images to define GIM segments 
using LabelMe.18 The labeled images were stored in portable 
network graphics (PNG) format and referred to as ground-
truth images. Data were stratified by the type of image to ensure 
that the proportion between white light and NBI images was 
maintained. The labeled GIM images were separated into three 
datasets. Seventy percent of the expected total GIM images 
were used as the training set, 10% were assigned for validation, 
and 20% served as the test dataset. 
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In addition to GIM images, an equal number of non-GIM 
gastroscopy images were also included in the test set to repre-
sent a realistic situation and to evaluate the results on non-GIM 
images. In these non-GIM frames, no annotations were made, 
except for cropping of the nonendoscopic areas. 

Model development 
Four main modules, including three preprocessing modules 
and one model training module, were used to improve the 
accuracy of our DLM (Fig. 1). First, the concept of TL was 
employed to overcome the small training size issue of GIM.17 
We utilized 1,068 colonic-polyp images from public datasets 
(CVC-Clinic19 and Kvasir-SEG20), as shown in Supplementary 
Figure 1, to pretrain the model to allow the DLM to learn from 
the GIM dataset more effectively (Supplementary Table 1). 

Second, and similar to IEE, each GIM image was enhanced by 
using contrast-limited adaptive histogram equalization (CLA-
HE) to amplify the contrast of the GIM regions (Supplementary 
Fig. 2).21 Third, multiple data AUG tricks were applied to create 
data variations. Nine AUG tricks were employed, including flips 
(horizontal and vertical), rotations (0°−20°), sharpening, add-
ing of noise, transposition, shift scale rotations, blur, optical dis-
tortions, and grid distortions. This step was aimed at increasing 
the training size, preventing overfitting, and making the model 
more robust (Supplementary Fig. 3). 

Finally, a bilateral segmentation network (BiSeNet)22 specifi-
cally designed for real-time segmentation using a much smaller 
model was applied on top of the pretrained model containing 

both the enhanced and augmented GIM images to achieve an 
IFS greater than 25 FPS.13 Two baseline models (DeepLabV3+11 
and U-Net12) were also used to analyze the datasets and serve as 
benchmark models (Supplementary Fig. 4). 

Performance evaluation 
The model’s performance was evaluated by an internal test in 
regards to two aspects: (1) GIM detection (the whole frame) 
and (2) GIM area segmentation (labeling the gastric mucosa 
area containing GIM). For GIM detection, true positives were 
classified when the prediction and the ground-truth regions in 
the GIM images overlapped by greater than 30%. True negatives 
were assigned when the size of the predicted region covered 
less than 1% of the non-GIM areas. The model validity was 
analyzed using metrics including sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and 
accuracy. 

Segmentation performance was evaluated by the mean in-
tersection over union (mIoU) areas, as shown in Figure 2. For 
non-GIM images, we calculated the surplus area that was incor-
rectly predicted as the GIM area. This was defined as the “errors.” 
IFS, a crucial measure that must be greater than 25 FPS in order 
for the model to create inferences in real time, was evaluated 
using FPS. The test dataset was assessed using each model. 
BiSeNet22 was used as the main model, with additional TL,17 
CLAHE,21 and AUG techniques. We used four versions of our 
new models (BiSeNet alone, BiSeNet+TL, BiSeNet+TL+CLA-
HE, and BiSeNet+TL+CLAHE+AUG) in the test dataset. Two 
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Fig. 1. The proposed framework of our study. GI, gastrointestinal; CLAHE, contrast-limited adaptive histogram equalization; BiSeNet, bilater-
al segmentation network.

392



benchmark models (DeepLabV3+11 and U-Net12) were also 
tested on the same dataset to compare the model performance 
(Fig. 3). 

Statistical analysis 
For the classification result, McNemar test was conducted to 
compare agreement and disagreement between our model and 
each baseline. For the segmentation results, a paired t-test was 
conducted for each image. For the IFS, a paired t-test was also 
computed to compare the run time of each round (five rounds 
total). 

Ethical statements 
The Institutional Review Board of the Faculty of Medicine, 
Chulalongkorn University, Bangkok, Thailand has approved 
this study in compliance with the International Guidelines for 
Human Research Protection in the Declaration of Helsinki, 
the Belmont Report, CIOMS guidelines, and the International 
Conference on Harmonization in Good Clinic Practice (ICH-
GCP; COA 1549/2020; IRB number 762/62). The protocol was 
registered at ClinicalTrials.gov (NCT04358198). 

RESULTS 

We collected and labeled 802 biopsy-proven GIM images from 

136 patients between January 2016 and December 2020 from 
the Center of Excellence for Innovation and Endoscopy in Gas-
trointestinal Oncology, Chulalongkorn University, Thailand. 
A total of 318 images were obtained from WLE, and 484 were 
NBI. Two expert endoscopists (RP and KT) performed anno-
tations on the images to define GIM segments using labeling 
software, LabelMe,18 with unanimous agreement. Labeled GIM 
images were randomly separated into training (70%, 560 imag-
es), validation (10%, 82 images), and testing (20%, 160 images) 
datasets (Table 1). The test dataset also included 160 non-GIM 
gastroscopy images, which included 137 WLE and 23 NBI im-
ages. 

GIM diagnostic performance 
Using the images from both WLE and NBI, BiSeNet combined 
with three additional preprocessing techniques (TL, CLAHE, 
and AUG) showed the highest sensitivity (93.13%) and NPV 
(92.09%) when compared to BiSeNet alone and BiSeNet with-
out full preprocessing techniques. The diagnostic specificity, 
accuracy, and PPV of BiSeNet+TL+CLAHE+AUG were 80.0%, 
86.5%, and 82.3%, respectively. The overall performance of our 
proposed model (BiSeNet+TL+CLAHE+AUG) was signifi-
cantly better than those of DeepLabV3+ and U-Net (p<0.01 for 
all parameters). The results for all six models are presented in 
Table 2. 

Fig. 2. Examples of intersection over union (mIoU) evaluation on a gastric intestinal metaplasia image. (A) IoU=0.8, (B) IoU=0.6, (C) 
IoU=0.4. Red indicates a ground-truth region. Blue indicates a predicted region. Green demonstrates the intersected area.
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Fig. 3. Prediction examples in six images, where the green circle encloses the gastric intestinal metaplasia (GIM) area. (A) Raw image, (B) 
ground-truth, and (C) prediction by BiSeNet alone, and (D) prediction by our full model (BiSeNet+TL+CLAHE+AUG). Rows 1–4 represent 
GIM images, and rows 5–6 represent non-GIM images. BiSeNet, bilateral segmentation network; TL, transfer learning; CLAHE, contrast- 
limited adaptive histogram equalization; AUG, augmentation.
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Table 1. Data separation in the gastric intestinal metaplasia dataset
Folder White light image Narrow-band image Total
Training 231 329 560
Validation 31 51 82
Testing 56 104 160
Total 318 484 802

Table 2. GIM detection performance of two baseline models (DeepLabV3+ and U-Net) compared to four BiSeNet variations
Both WLE and NBI images Sensitivity Specificity PPV NPV Accuracy 
Baseline
 DeepLabV3+ 83.75 70.00 73.63 81.16 76.88
 U-Net 87.50 62.50 70.00 83.33 75.00
Our model
 BiSeNet 81.88 87.50 86.75 82.84 84.69
 BiSeNet+TL 80.00 91.88 85.94 82.12 85.94
 BiSeNet+TL+CLAHE 89.38 73.75 77.30 87.41 81.56
 BiSeNet+TL+CLAHE+AUG 93.13 80.00 82.32 92.09 86.56

Values are presented as percentage.
GIM, gastric intestinal metaplasia; WLE, white light endoscopy; NBI, narrow-band imaging; BiSeNet, bilateral segmentation network; TL, transfer learn-
ing; CLAHE, contrast-limited adaptive histogram equalization; AUG, augmentation; PPV, positive predictive value; NPV, negative predictive value.

Table 3. GIM detection performance of two baseline models (DeepLabV3+ and U-Net) compared to four BiSeNet variations, all using WLE 
images

WLE images alone Sensitivity Specificity PPV NPV Accuracy 
Baseline
 DeepLabV3+ 80.36 68.61 51.14 89.52 72.02
 U-Net 85.71 60.58 47.06 91.21 67.88
Our model
 BiSeNet 78.57 85.40 68.75 90.70 83.42
 BiSeNet+TL 71.43 91.24 76.92 88.65 85.49
 BiSeNet+TL+CLAHE 83.93 72.99 55.95 91.74 76.17
 BiSeNet+TL+CLAHE+AUG 85.71 78.83 62.34 93.10 80.83

Values are presented as percentage.
GIM, gastric intestinal metaplasia; WLE, white light endoscopy; BiSeNet, bilateral segmentation network; TL, transfer learning; CLAHE, contrast-limited 
adaptive histogram equalization; AUG, augmentation; PPV, positive predictive value; NPV, negative predictive value.

Table 4. GIM detection performance of two baseline models (DeepLabV3+ and U-Net) compared to four BiSeNet variations, all using NBI 
images

NBI images alone Sensitivity Specificity PPV NPV Accuracy 
Baseline
 DeepLabV3+ 85.58 78.26 94.68 54.55 84.25
 U-Net 88.46 73.91 93.88 58.62 85.83
Our model
 BiSeNet 83.65 100.00 100.00 57.50 86.61
 BiSeNet+TL 84.62 95.65 98.88 57.89 86.61
 BiSeNet+TL+CLAHE 92.31 78.26 95.05 69.23 89.76
 BiSeNet+TL+CLAHE+AUG 97.12 86.96 97.12 86.96 95.28

Values are presented as percentage.
GIM, gastric intestinal metaplasia; NBI, narrow-band imaging; BiSeNet, bilateral segmentation network; TL, transfer learning; CLAHE, contrast-limited 
adaptive histogram equalization; AUG, augmentation; PPV, positive predictive value; NPV, negative predictive value.

The diagnostic performances of BiSeNet+TL+CLAHE+AUG 
when using WLE images alone (Table 3) was lower than that of 
NBI images alone (Table 4) in all modalities, including speci-
ficity (78.8% vs. 86.9%), accuracy (80.8% vs. 95.2%), and PPV 
(62.3% and 97.1%). Furthermore, the overall performance of 
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BiSeNet+TL+CLAHE+AUG from either WLE or NBI images 
was significantly better than the benchmarks DeepLabV3+ and 
U-Net (p<0.01 for all parameters) (Tables 3, 4). 

GIM segmentation performance 
BiSeNet with three preprocessing models showed the highest 
mIoU in segmenting GIM areas (57.04%±2.75%) compared 
to BiSeNet alone and BiSeNet without full preprocessing tech-
niques (mIoU 45.94%±3.07% for BiSeNet alone; 47.29%±3.18% 
for BiSeNet+TL; and 54.94%±2.90% for BiSeNet+TL+CLA-
HE), with an error of less than 1% (0.96%). When compared 
to the benchmark models DeepLabV3+ and U-Net, the mIoU 
of BiSeNet with the three combinations was significantly bet-
ter (mIoU 57.04%±2.75% for BiSeNet+TL+CLAHE+AUG; 
49.22%±3.06% for DeepLabV3+; and 53.02%±2.99% for U-Net; 
p<0.01 in all parameters) (Table 5). 

The segmentation performance of BiSeNet+TL+CLAHE+ 
AUG when using WLE images alone (Supplementary Table 2) 
was lower than that using NBI images alone (Supplementary 
Table 3), 52.94% vs. 59.25% in terms of mIoU. Moreover, the 
overall performance of BiSeNet+TL+CLAHE+AUG using ei-
ther WLE or NBI images was significantly better than that of 
DeepLabV3+ and U-Net (p<0.01) (Supplementary Tables 2, 3). 

Inference speed 
The IFS of BiSeNet+TL+CLAHE+AUG was 31.53±0.10 FPS. 
BiSeNet alone and all BiSeNet combinations with preprocess-
ing models achieved an IFS greater than the 25 FPS threshold. 
The IFS of the benchmark models, DeepLabV3+ and U-Net, 
reached only 2.20±0.01 and 3.49±0.04, respectively (Table 6). 

To explore the ability of our model to segment GIM areas 

Table 5. The segmentation performance of two baselines (DeepLabV3+ and U-Net) compared to four BiSeNet family models
Both WLE and NBI images mIoU for GIM (%) Error for non-GIM (%)
Baseline
 DeepLabV3+ 49.22±3.06 1.79±0.72
 U-Net 53.02±2.99 1.81±0.53
Our model
 BiSeNet 45.94±3.07 0.46±0.18
 BiSeNet+TL 47.29±3.18 0.33±0.17
 BiSeNet+TL+CLAHE 54.94±2.90 0.98±0.36
 BiSeNet+TL+CLAHE+AUG 57.04±2.75 0.96±0.36

Values are presented as ±95% CI.
BiSeNet, bilateral segmentation network; WLE, white light endoscopy; NBI, narrow-band imaging; mIoU, mean intersection over union; 
GIM, gastric intestinal metaplasia; CI, confidence interval; TL, transfer learning; CLAHE, contrast-limited adaptive histogram equalization; 
AUG, augmentation.

Table 6. The inference speed of the two benchmarks (DeepLabV3+ 
and U-Net) compared to four BiSeNet family model variations

Method Frames per second
Baseline
 DeepLabV3+ 2.20±0.01
 U-Net 3.49±0.04
Study model
 BiSeNet 34.02±0.24
 BiSeNet+TL 33.33±0.05
 BiSeNet+TL+CLAHE 31.83±0.31
 BiSeNet+TL+CLAHE+AUG 31.53±0.10

Values are presented as mean ± standard deviation.
BiSeNet, bilateral segmentation network; TL, transfer learning; CLAHE, 
contrast-limited adaptive histogram equalization; AUG, augmentation.

in a real-time clinical setting, we tested the model on a WLE 
video (Supplementary Video 1). In the video clip, the model 
successfully segmented the GIM lesions correctly without any 
sluggishness. 

DISCUSSION 

The suspicion of GIM based on artificial intelligence (AI) read-
ings may facilitate targeted biopsy. In particular, since unneces-
sary endoscopic biopsy can be avoided, AI methods would be 
useful for patients at risk of bleeding, such as those with coagu-
lopathy or platelet dysfunction or those taking antithrombotic 
agents. Techniques using deep learning for the detection and 
analysis GI lesions using convolutional neural networks23 have 
rapidly evolved.24 The two primary objectives for DLM are de-
tection and diagnosis (CADe/CADx). Earlier DLMs for GI en-
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doscopy have been successfully employed on the lower GI tract 
(e.g., colonic-polyp classification, localization, and detection). 
DLM employed on the colon achieved a real-time performance 
with a very high sensitivity (>90%).25 

There have been many attempts to use DLM to detect up-
per GI lesions, including gastric neoplasms, while performing 
upper GI endoscopy; however, most studies have focused on 
detecting gastric cancer.26-29 Unlike colonic polyps that require 
only CADe/CADx, GIM requires more precise segmentation 
because it usually contains irregular borders with many satellite 
lesions. None of the current DLMs could achieve the expected 
level of real-time segmentation because the IFS was still too 
slow. Xu et al.30 used four DLMs, including ResNet-50,31 VGG-
16,32 DenseNet-169,33 and EfficientNet-B4,34 and demonstrated 
their GIM detection capabilities; however, the endoscopist still 
had to freeze the image in order to segment the GIM area. This 
is not practical when performing a real-time upper GI endosco-
py.30 In addition, their DLMs were mainly used for interpreting 
NBI images rather than WLE images, which is usually the pre-
ferred mode during initial endoscopy. 

Our study showed that by adding all three preprocessing 
techniques (TL, CLAHE, and AUG) to the BiSeNet model, the 
new DLM could achieve a sensitivity and NPV higher than 
90% for detecting GIM using both WLE and NBI images while 
maintaining an IFS faster than the 25 FPS threshold. 

BiSeNet is a recent real-time semantic segmentation tool that 
balances the need for accuracy with an optimum IFS. Using 
BiSeNet alone, the IFS was ten times faster than the two other 
baseline models, DeepLabV3+ and U-Net (34.02 vs. 2.20 and 
3.49% FPS), with comparable performance in terms of classi-
fication and segmentation. Despite the impressive speed, the 
sensitivity and NPV of BiSeNet alone for GIM detection was 
only 82% and 83%, respectively. Hence, it could not pass the 
threshold recommended by the Preservation and Incorporation 
of Valuable Endoscopic Innovations (PIVI) standards for diag-
nostic tools that require an NPV>90%.35 Therefore, additional 
preprocessing methods such as TL, CLAHE, and AUG are re-
quired to improve model validity, especially the NPV.  

While the number of GIM images in our database was lim-
ited, the upper GI images shared common characteristics with 
colonoscopic images in terms of color and texture, allowing 
the colonoscopic images to be utilized for TL. By adding 2,680 
colonoscopic images, TL increased the specificity of the model 
from 87% to 92%, although the NPV remained lower than the 
90% threshold.  

The biggest improvement in our DLM can be credited to the 
application of CLAHE. The detection sensitivity improved by 
almost 10% (from 82% to 89%), and the mIoU increased by 
9% points (from 46% to 55%). This is probably due to the large 
number of WLE images in our training data, which provided 
robust image enhancement. Because CLAHE enhances small 
details, especially textures and local contrast, it can amplify 
WLE image contrast similar to IEE technology. This is promis-
ing for achieving high efficacy in our DLM on WLE images 
without the need for the NBI mode during real-time endos-
copy. 

AUG also further improved the sensitivity compared to the 
previous model by 4% (from 89% to 93%) and increased the 
mIoU by 2% (from 55% to 57%). Among all three preprocess-
ing methods, TL seemed to show the least benefit. We believe 
that this may be caused by the differences in the backgrounds 
of the pretraining colon datasets when compared to the GIM 
dataset. In retrospect, other upper GI images of disorders such 
as hemorrhagic gastritis, gastric ulcer, and gastric cancer should 
have been used instead of just colon images. 

Our study illustrated that when using BiSeNet alone, the IFS 
(31.53±0.10) was faster than the minimum requirement for a 
real-time performance of 25 FPS. Although the model might 
have a comparable sensitivity to the two original benchmarks, 
DeepLabV3+ and U-Net (81.88% vs. 83.75% and 87.50%, re-
spectively), the specificity of BiSeNet was significantly higher 
than that of the two baselines (87.50% vs. 70.00% and 62.50%, 
respectively; p<0.01). By adding the three techniques of TL, 
CLAHE, and AUG, we demonstrated a significant improvement 
in validities across the board. Importantly, the high NPV for 
GIM diagnosis in our model (92.09%) exceeded the acceptable 
performance threshold outlined by PIVI as a screening endos-
copy tool. Notably, the other DLMs did not reach the threshold 
number. 

For the GIM segmentation, our DLM produced an mIoU 
of 57.04%, which is considerably lower than that of a substan-
tial mIoU. Since GIM typically presents as scattered lesions in 
the same area, we believe that correct segmentation on more 
than half of all GIM lesions is sufficient for the endoscopists 
to perform targeted biopsy and to provide the correct recom-
mendation regarding the frequency of endoscopic surveillance 
from the extension of GIM. For example, the British Society of 
Gastroenterology guidelines on the diagnosis and management 
of patients at risk of gastric adenocarcinoma recommend an in-
terval of endoscopic surveillance according to the extension of 
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GIM.36 An interval of 3 years is recommended for patients with 
extensive GIM, defined as that affecting both the antrum and 
body. For patients with GIM limited to only the antrum, the 
risk of gastric cancer development is very low; therefore, further 
surveillance is not recommended.36 

The key breakthrough of this study is that, for the first time, a 
DLM has been able to achieve an IFS speed that is fast enough 
to perform real-time GIM segmentation. Our full DLM could 
also detect and segment GIM areas from both WLE and NBI 
images. We believe that our DLM is more practical for endos-
copists who usually perform initial endoscopy with WLE and 
then switch to NBI mode for detailed characterization after a 
lesion is detected. We also feel that our DLM may aid less ex-
perienced endoscopists in locating more suspected GIM areas 
during WLE, considering that they can switch to NBI mode af-
ter being notified by the DLM to further examine the suspected 
GIM areas more efficiently. 

The findings of this study must be tempered with several 
limitations that could impact the successful replication and 
real-time success of our model. First, we retrieved the GIM 
images from one endoscopy center using a single endoscope 
model. To address the issue of dataset quality and increase 
the generalizability of results, images from other endoscopy 
centers and endoscope models with different IEE modes, in-
cluding iScan, blue light imaging, and linked color imaging, 
are needed. Second, this model has not been fully studied in 
a real-time setting. Our preliminary test showed that it could 
function well without sluggish frames. Most importantly, 
endoscopists did not need to freeze the video to produce 
the still image for the DLM analysis (Supplementary Video 
1). Third, we excluded other endoscopic findings, including 
hemorrhagic gastritis, gastric ulcer, and gastric cancer, as 
well as retained food content, bubbles, and mucous from our 
datasets. Therefore, our model may return more errors when 
analyzing lesion images. However, we feel that in real-time 
procedures, endoscopists should easily distinguish between 
these abnormalities and the actual suspected GIM areas. 
Finally, the results of this study were based on an internal 
test that lacked external validation. Nevertheless, we plan to 
conduct an external validation test to prove the results of this 
study in the near future. 

In conclusion, compared with the benchmark models Dee-
plabV3+ and U-Net, the BiSeNet model in combination with 
three techniques (TL, CLAHE, and data AUG) significantly 
improved GIM detection while maintaining a fair quality of 

segmentation (mIoU>50%). With the IFS reaching 31.53 FPS 
in this model, these results pave the way for future research on 
real-time GIM detection during upper GI endoscopy. 

Supplementary Material 

Supplementary Video 1. The model was tested on a real video 
during esophagogastroduodenoscopy. It successfully captured 
the gastric intestinal metaplasia lesions in real time (https://doi.
org/10.5946/ce.2022.005.v001). 

Supplementary Fig. 1. Examples of colonoscopy images for 
transfer learning.

Supplementary Fig. 2. Images pre- and postprocessed by CLAHE. 

Supplementary Fig. 3. Examples of the nine data augmentation 
techniques applied to each gastric intestinal metaplasia image.

Supplementary Fig. 4. Model architecture of the BiSeNet. 

Supplementary Table 1. Images and resolution of each dataset 
for transfer learning. 

Supplementary Table 2. Segmentation performance of two base-
line models (DeepLabV3+ and U-Net) compared to four BiSeNet 
family models focused on white light endoscopy images.

Supplementary Table 3. Segmentation performance of two base-
line models (DeepLabV3+ and U-Net) compared to four BiSeNet 
family models focused on narrow-band imaging images.  

Supplementary materials related to this article can be found on-
line at https://doi.org/10.5946/ce.2022.005.  
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