• Title/Summary/Keyword: Tilt Implantation

Search Result 13, Processing Time 0.026 seconds

A Study of SiC Trench Schottky Diode with Tilt-Implantation for Edge Termination (Edge Termination을 위해 Tilt-Implantation을 이용한 SiC Trench Schottky Diode에 대한 연구)

  • Song, Gil-Yong;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.214-219
    • /
    • 2014
  • In this paper, the usage of tilt-implanted trench Schottky diode(TITSD) based on silicon carbide is proposed. A tilt-implanted trench termination technique modified for SiC is proposed as a method to keep all the potentials confined in the trench insulator when reverse blocking mode is operated. With the side wall doping concentration of $1{\times}10^{19}cm^{-3}$ nitrogen, the termination area of the TITSD is reduced without any sacrifice in breakdown voltage while potential is confined within insulator. When the trench depth is set to 11um and the width is optimized, a breakdown voltage of 2750V is obtained and termination area is 38.7% smaller than that of other devices which use guard rings for the same breakdown voltage. A Sentaurus device simulator is used to analyze the characteristics of the TITSD. The performance of the TITSD is compared to the conventional trench Schottky diode.

A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator (MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구)

  • 이용희;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF

The Study on Impurity Concentration Optimizing for the Refresh Time Improvement of DRAM (DRAM의 Refresh 시간 개선을 위한 불순물 농도 최적화에 관한 연구)

  • Lee Yong-Hui;Woo Kyong-Hwan;Yi Cheon Hee
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.325-328
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. In this paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced $\Delta$ Rp increase using buffered N- implantation with tilt and 4X-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N- concentration which is intentionally caused by Ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation.

  • PDF

Development of physically based 3D computer simulation code TRICSI for ion implantation into crystalline silicon

  • Son, Myung-Sik;Lee, Jun-Ha;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • A new three-dimensional (3D) Monte Carlo ion implantation simulator, TRICSI, has been developed to investigate 3D mask effects in the typical mask structure for ion implantation into crystalline silicon. We present the mask corner and mask size effects of implanted boron range profiles, and also show the calculated damage distributions by applying the modified Kinchin-Pease equation in the single-crystal silicon target. The simulator calculates accurately and efficiently the implanted-boron range profiles under the relatively large implanted area, using a newly developed search algorithm for the collision partner in the single-crystal silicon. All of the typical implant parameters such as dose, tilt and rotation angles, in addition to energy can be used for the 3D simulation of ion implantation.

A Study of Three Dimensional Ion Implantation Simulator (3차원 이온 주입 시뮬레이터 개발에 관한 연구)

  • 송재복;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.93-96
    • /
    • 1996
  • We developed three dimensional Monte carlo ion implantation simulator which simulate distributions of impurities under the ion implantation on the tilted multi-layered layer. Our simulation reveals three dimensional shadow effect and sidewall scattering effect due to the geometrical shapes. For the evaluation of the developed three dimensional Monte carlo ion implantation simulator, calculations with 100,000 ions have been performed for the island and hole structures with a thin oxide of 100$\AA$ and nitride of 2000$\AA$. The simulation results showed that the distribution of ion decreases near the conner of the hole structure covered with a nitride layer and increases near the conner for the island structure open to oxide. Moreover, three dimensional distributions of ions were obtained with varying incident energy, tilt and rotation angle, mask depth and three-dimensional structure geometry.

  • PDF

Wear and Implantation Tilt Measurements using X-ray and CAD (X-ray영상과 CAD를 이용한 인공고관절의 마모 및 식립각 측정법)

  • Lee, Jong Min;Lee, Yeon Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2018
  • Long-term complications such as loosening, wear, osteolytic lesion and granulomatous reaction by foreign bodies can occur, after total hip arthroplasty. The implantation alignment effects dislocation and wear, according to its amount and direction. Wear particles in total hip arthroplasty brings about biochemical complications such as osteolysis or send wear. In this sense, it is important to regularly check wear and alignment of total hip replacement. Because the wear in followup of 10 years may remain in a small amount, like a 1 or 2 mm generally, somewhat precise measurement tool has to be established. The wear and alignment measurement softwares commercially available currently lack in project saving or reproducibility. This study suggests a reliable method for the measurement using an X-ray image and a CAD software. The proposed method can be executed only if having a CAD software under most of current general clinical radiographical environment. The proposed was revealed through tests for the method to have accuracy of 0.06 mm with precision of 0.05 mm for wear measurement, and precision of 0.27 degrees for tilt measurement.

Three-dimensional monte carlo simulation and mask effect of low-energy boron ion implantation into <100>single-crystal silicon (<100>방향 실리콘 단결정에서의 저 에너지 붕소 이온 주입 공정에 대한 3차원 몬테 카를로 시뮬레이션 및 마스크 효과)

  • 손명식;이준하;송영진;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.94-106
    • /
    • 1995
  • A three-dimensional(3D) Monte Carlo simulator for boron ion implantation into <100>single-crystal silicon considering the mask structure has been developed to predict the mask-dependent impurity doping profiles of the implanted boron at low energies into the reduced area according to the trend of a reduction in the size of semiconductor devices. All relevant important parameters during ion implantation have been taken into account in this simulator. These are incident energy, tilt and rotation of wafer, orientation of silicon wafer, presence of native silicon dioxide layer, dose, wafer temperature, ion beam divergence, masking thickness, and size and structure of open window in the mask. The one-dimensional(1D) results obtained by using the 3D simulator have been compared with the SIMS experiments to demonstrate its capabilities and confirem its reliability, and we obtained relatively accurate 1D doping profiles. Through these 3D simulations considering the hole structure and its size, we found the mask effects during boron ion implantation process.

  • PDF

A Study on the Silicon Damages and Ultra-Low Energy Boron Ion Implantation using Classical Molecular Dynamics Simulation (고전 분자 동 역학 시뮬레이션을 이용한 실리콘 격자 손상과 극 저 에너지 붕소 이온 주입에 관한 연구)

  • 강정원;강유석;손명식;변기량;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.30-40
    • /
    • 1998
  • We have calculated ultra-low energy silicon-self ion implantations and silicon damages through classical molecular dynamics simulation using empirical potentials. We tested whether the recently developed Environment-Dependent Interatomic Potential(EDIP) was suitable for ultra low energy ion implantation simulation, and found that point defects formation energies were in good agreement with other theoretical calculations, but the calculated vacancy migration energy was overestimated. Most of the damages that are produced by collision cascades are concentrated into amorphous-like pockets. Also, We upgraded MDRANGE code for silicon ion implantation process simulation. We simulated ultra-low energy boron ion implantation, 200eV, 500eV, and 1000eV respectively, and calculated boron profiles with silicon substrate temperature and tilt angle. We investigated that below 1000eV, channeling effect must be considered.

  • PDF

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

Improvement of Boron Penetration and Reverse Short Channel Effect in 130nm W/WNx/Poly-Si Dual Gate PMOSEET for High Performance Embedded DRAM

  • Cho, In-Wook;Lee, Jae-Sun;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.193-196
    • /
    • 2002
  • This paper presents the improvement of the boron penetration and the reverse short channel effect (RSCE) in the 130nm W/WNx/Poly-Si dual gate PMOSFET for a high performance embedded DRAM. In order to suppress the boron penetration, we studied a range in the process heat budget. It has shown that the process heat budget reduction results in suppression of the boron penetration. To suppress the RSCE, we experimented with the halo (large tilt implantation of the same type of impurities as those in the device well) implant condition near the source/drain. It has shown that the low angle of the halo implant results in the suppression of the RSCE. The experiment was supported from two-dimensional(2-D) simulation, TSUPREM4 and MEDICI.

  • PDF