DOI QR코드

DOI QR Code

A Study of SiC Trench Schottky Diode with Tilt-Implantation for Edge Termination

Edge Termination을 위해 Tilt-Implantation을 이용한 SiC Trench Schottky Diode에 대한 연구

  • Received : 2014.04.29
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

In this paper, the usage of tilt-implanted trench Schottky diode(TITSD) based on silicon carbide is proposed. A tilt-implanted trench termination technique modified for SiC is proposed as a method to keep all the potentials confined in the trench insulator when reverse blocking mode is operated. With the side wall doping concentration of $1{\times}10^{19}cm^{-3}$ nitrogen, the termination area of the TITSD is reduced without any sacrifice in breakdown voltage while potential is confined within insulator. When the trench depth is set to 11um and the width is optimized, a breakdown voltage of 2750V is obtained and termination area is 38.7% smaller than that of other devices which use guard rings for the same breakdown voltage. A Sentaurus device simulator is used to analyze the characteristics of the TITSD. The performance of the TITSD is compared to the conventional trench Schottky diode.

본 논문에서는 실리콘 카바이드(silicon carbide)를 기반으로 한 tilt-implanted trench Schottky diode(TITSD)를 제안한다. 4H-SiC 트랜치 쇼트키 다이오드(trench Schottky diode)에 형성되는 트랜치 측면에 경사 이온주입(tilt-implantation)을 하여 소자가 역저지 상태(reverse blocking mode)로 동작 시 trench insulator가 모든 퍼텐셜(potential)을 포함하는 구조를 제안하고, 그 특성을 시뮬레이션을 통해 확인하였다. TITSD는 트랜치의 측면(sidewall)에 nitrogen을 $1{\times}10^{19}cm^{-3}$ 으로 도밍(doping) 하여 항복전압(breakdown voltage) 특성도 경사 이온주입을 하지 않았을 때와 같게 유지하면서 trench oxide insulator가 모든 퍼텐셜을 포함하도록 함으로써 termination area를 감소시켰다. 트랜치 깊이(trench depth)를 $11{\mu}m$로 깊게 하고 최적화된 폭(width)을 선택함으로써 2750V의 항복전압을 얻었고, 동급의 항복전압을 가진 가드링(guard ring) 구조보다 termination area를 38.7% 줄일 수 있다. 이에 대한 전기적 특성은 synopsys사의 TCAD simulation을 사용하여 분석하였으며, 그 결과를 기존의 구조와 비교하였다.

Keywords

References

  1. B. J. Baliga, "Silicon Carbide Power Devices," World Scientific, 2005.
  2. B. J. Baliga, "Fundamentals of Power Semiconductor Devices," Springer, 2008.
  3. David C. Sherdian, Guofu Niu, J. Neil Merrett, John D. Cressler, Charles Ellis, Chin-Che Tin "Design and Fabrication of Planar Guard Ring Termination for High-voltage SiC Diodes," Solid-State Electronics, 44, pp. 1367-1372. 2000. https://doi.org/10.1016/S0038-1101(00)00081-2
  4. Vik Saxena, Jian Nong Su, Andrew J. Steckl "High-Voltage Ni- and Pt-SiC Schottky Diodes Utilizing Metal Field Plate Termination," IEEE Trans, Electron Devices, vol, 46, No. 3, pp. 456-463, March 1999. https://doi.org/10.1109/16.748862
  5. Alexander V. Bolotnikov, Peter G. Muzykov, Qungchun, A.K. Agarwal, T. S. Sudarshan "Junction Termination Extension Implementing Drive-in Diffusion of Boron for High-Voltage SiC Devices," IEEE Trans. Electron Devices, vol. 57, No.8, pp. 1930-1935, Aug. 2010. https://doi.org/10.1109/TED.2010.2051246
  6. Seong-Jin Kim, Dong-Ju Oh, Soon-Jae Yu, Yong-Deuk Woo, "Breakdown Voltage Characteristics of SiC Schottky Barrier Diode of with Aluminum Deposition Edge Termination Structure," Journal of the Korean Physical Society, Vol. 49, pp. S768-S773, December 2006.
  7. L. Theolier, H. Mahfoz-Kotb, K. Isoird, F. Morancho, "A New Junction Termination Technique; The Deep Trench Termination ($DT^2$)," IEEE, pp. 176-179, 2009.
  8. Ryu Kamibaba, Kenichi Takahama, Ichiro Omura "Design of Trench Termination for High Voltage Devices," ISPSD, Hiroshima, Japan, pp. 107-110, 2010.

Cited by

  1. SiC/SiO2 Interface Characteristics in N-based 4H-SiC MOS Capacitor Fabricated with PECVD and NO Annealing Processes vol.18, pp.4, 2014, https://doi.org/10.7471/ikeee.2014.18.4.447