• Title/Summary/Keyword: Tide and tidal flow

Search Result 145, Processing Time 0.026 seconds

Tide And Tidal Current In The Estuary Of The Nakdong River (낙동강 하구의 조석과 유동)

  • Ryu, Cheong-ro;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 1979
  • Tidal waves and the fluctuation of current are studied by use of observed data on tidal level, flow velocity and river discharge in the estuarine region of the Nakdong River. Observed data on the tidal level at five stations are used to obtain the fluctuation of amplitude and phase of tides, and the change of the wave speed versus distance from the river mouth. Comnining these tidal data with the vertical distribution of horizontal velocity data, some characteristics of the periodic tidal flow are deduced: (1)Diminishing rates of the tidal amplitude ratio η / η$\_$0/ at high tide were 0.058η$\_$0H/ /Km at neap tides. The constant of phase change, K, was 0.035rad/km. (2)While proceeding landward, the shape of the tidal wave changes from symmetrical to asymmetrical. The traveling speed of the tidal wave crest was estimated to be 3.6∼5.2m/sec, while that of the tidal wave trough was 2.4∼ 3.5m/sec. (3)The flowing speed of the water varies periodically in accordance with the tidal period. The maximum speed of landward flow appeared approximately at two hours before the high tide, while that of seaward flow at two hours before the low tide. (4)The upstream boundary is deduced approximately to be 50km at spring tide and 44km at neap tide from the tidal velocity decreasing. the tidal influence area is estimated approximately to be 65km from the tidal amplitude damping.

  • PDF

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.

Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea (금오도-안도 협수로 해역의 조류 및 조석잔차류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

Studies on the Natural Mortality of the Young Short Necked Clam, Tapes japonica-I. Seaonal Variation of the tidal Temperature, Sainity , and the Effect of Overflowing Fresh Water on the Subterranean Salinity of the Tidal Flat at Low Tide (바지락 치패의 폐사에 관한 연구-I 간척지의 간출시에 있어서의 온도, 염분변화와 유입하천수의 지하염분에 미치는 영향)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1966
  • Frequently , large masses of the young short necked clam, Tapes japonica , die at their tidal flats in summer and this phenomenon has not been explained clearly. The purpose of the present investigation is to study the thermal condition and the chlorinity level of tidal flats in which the young clam appears to be injured. A study is also mad efor the burrowing organism in the lower layer of the esturay over which the fresh water flow during the low tide. Observation are made at five places of the tidal flat near Ikawazu Fixheries Laboratory of Tokyo University during the ebb and flow tide period of the spring tide. The diurnal and monthly changes of tidal temperatures and chlorinities are measured. Results of the study are ; 1. The surface temperature of the tidal flat increases with the ebb tide, reaches the highest between 12-14PM, and gradually decreases thereafter. The temperatures of tidal flat below 5 and 10 cm increase gradually until the flow tide reaches the surface. 2. At the spring tide in summer , the diurnal change of surface of the tidal flat temperature is very extensive ; it reaches 37-39$^{\circ}C$ in August. At the depths of 5 and 10 cm the temperature remains at 33 $^{\circ}C$ and 31$^{\circ}C$ , respectively. 3. The chlorinity of the tidal flat is higher during May through June and lower July through August, and this seems to be related to the amount of rainfall. 4. The chlorinity of the surface of tidal flat increases slightly during the ebb and flow tide periods. The observed higher chlorinity of surface of the tidal flat was 18.82% Cl. 5. At near the esturay, the fresh water that overflows the tidal flat affects the chlorinity of the surface but no such influence to the depth of the flat. 6. From above observations, it is assumed that the young short necked clam in the tidal flat could be exposed to the severe change of environmental conditions. The high temperature of the tidal flat in summer and the low chlorinity of it at flood period may be considered as the change in environment.

  • PDF

On the Tides, Tidal Currents and Tidal Prisms at Inchon Harbor (인천항의 조석, 조류 및 조량에 대하여)

  • Yi, Sok-U
    • 한국해양학회지
    • /
    • v.7 no.2
    • /
    • pp.86-97
    • /
    • 1972
  • The tides, tidal currents and tidal prisms at Inchon Harbor are studied with recent data. The tides at Inchon Harbor is of semi-diurnal type having a spring range of 798cm and a phase age of 2 days. The monthly mean sea level at Inchon has a maximum at August and a minimum at January with a annual range of about 40cm. the tidal currents at Inchon Outer Harbor are of semi-diurnal type same as tides and nearly reversing type. The flood and ebb currents set north and south with a velocity of about 90-175 cm/sec and 120-225 cm/sec at spring tide and begin 0.2 hours after L.W. and 0.7 hours after H. W., respectively. Non-tidal currents flow southward with 10-20 cm/sec at west side of the stream and northward with 15-20 cm/sec at east side of the stream at Inchon Outer Harbor. The flood volume through the Inchon Outer Harbor fluctuates fortnightly from 590 10$\^$6/㎥ spring tide to 260 $10^6/m^3$ at neap tide and ebb volume changes from 470 $10^6/m^3$ at spring tide to 200 $10^6/m^3$ at neap tide, respectively. The flow area along the channel to the Estuary of Yeomha is controlled by the tidal prism as expressed by $A=1.14{\times}10^{-4}P^{0.966}$

  • PDF

Tidal and tide-induced residual currents around Hampyung Bay and Hajae Peninsula by numerical simulation (수치모형을 통한 함평만과 해제반도 주변해역의 조류 및 조석잔차류 분포)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.114-125
    • /
    • 2020
  • In order to understand the currents around Hampyung Bay and Haeje Peninsula, 2D numerical simulations for tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have reversing form and flow NNE-SSW from northern Haeje Peninsula to Songi Island, E-S at northern Haeje Peninsula and NNW-SSE in Hampyung Bay. In flood, a part of currents from Imja Island~Nakwhol Island flow along the main stream flowing northeast at offshore region and the rest flow into Hampyung Bay flowing east along the northern coast of Haeje Peninsula. In ebb, currents from Hampyung Bay flow west along the northern coast of Haeje Peninsula and run together with the main stream flowing southeast at offshore region. The currents create an anticyclonic circulation in flood and a cyclonic circulation in ebb around Haeje Peninsula including Hampyung Bay. Tidal currents are accumulated on Doripo which located at the entrance of Hampyung Bay and show high current velocities. Tidal currents and tide induced residual currents are weak at the inside of Hampyung Bay which has narrow entrance, shallow water depth and wide intertidal zone. An anticyclonic eddy is formed around Gaksi Island as a result of tide induced residual currents. In northern coast of Haeje Peninsula, slow constant currents flow east. It is expected that a gradual change of sediment and an increase of flushing time for suspended materials are carried by tidal currents occurring in Hampyung Bay.

Field Observations and Hydraulic Model Experiments of Tidal Currents in Chinhae Bay (진해만 조류의 현장관측 및 수리모형실험)

  • CHANG Sun-Duck;KIM Cha-Kyum;LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 1993
  • Tidal currents and tidal residual currents in Chinhae Bay are investigated by the field observations and hydraulic experiments during the spring tide and neap tide. The horizontal and vertical scales of the model are l/2,000 and 1/159, respectively. The hydraulic model results roughly coincide with the field data. Maximum tidal currents during the spring tide and neap tide in the central channel of Chinhae Bay are strong as about 90 and 30cm/s respectively, and strong tidal residual currents take place. Maximum tidal currents during the spring tide and neap tide in the western and northern part of the bay are weak as below 30 and 10cm/s respectively, and also tidal residual currents are weak. Tidal residual currents rotating clockwise occur in the central part of the bay. Northward tidal residual currents in the northern part of Kajo-do are predominant, whereas southward ones in the southern part of Kajo-do are remarkable. The surface currents in the bay depend strongly on the wind and river flow, and it seems to be remarkable during the neap tide.

  • PDF

Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone (목포해역 낙조류 우세현상의 수치모의)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.333-343
    • /
    • 2010
  • In Mokpo coastal zone, the characteristics showing ebb-dominant tidal flow was confirmed by analysis of observed tide and tidal currents, Physical factors occurring ebb-dominant flow were reviewed. Influence of critical depth for drying, bottom shear stress, coastal reclamation, tidal amplitude, nonlinear tide, and eddy viscosity on the change of ebb-dominant flow was investigated by applying a two-dimensional circulation model. The simulation results for a variety of conditions showed that eddy viscosity and critical depth for drying does little or no impact on the generation of asymmetric flow. Strong bottom friction stress makes ebb-dominant flow clearly. Change of tidal flat into land swells ebb- dominant flow, and change of tidal flat into sea disappears ebb-dominant flow. Nonlinear tides play a decisive role in the generation of asymmetrical tidal flow. Non-linear tides should be included in the open boundary conditions of hydrodynamic modeling in the Mokpo coastal zone.

Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I) (유한요소법을 이용한 해수유동 해석 (I))

  • 권순국;고덕구;조국광;김준현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

Distributions of Tidal Current, Salinity and Suspended Sediment in Suyoung Bay (수영만의 조류, 염분 및 부유물질의 분포)

  • KIM Cha-Kyum;LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.359-370
    • /
    • 1992
  • To investigate the flow pattern and mixing process in Suyoung Bay, field observations and data analyses of tidal current, salinity and suspended sediment (SS) were carried out. Ebb flow is stronger than flood flow, and duration of ebb tide is longer than that of flood tide. Semi-diurnal component of tidal current is predominant, and current rotating clockwise occurs in the central part of the bay. The direction of the residual currents in the central part of the bay and offshore is almost N to WNW, and the speed is 4-14cm/s. Eulerian diffusion coefficients estimated from the current data have the range of $6.2\times10^4-4.2\times10^6\;cm^2/s,$ Salinity structure in Suyoung River estuary during flood tide is of partially mixed type, but is of stratified type during ebb tide. Salinity fluctuation is large at the surface, and the fluctuation decreases with depth. SS concentration in Suyoung River estuary has a higher value during ebb tide than that during flood tide. Salinity and 55 concentrations in the estuary appeared to be very sensitive to the change of river flow.

  • PDF