• Title/Summary/Keyword: Thrust coefficient

Search Result 169, Processing Time 0.03 seconds

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

An Experimental study for the heat flux in liquid rocket thrust chamber (액체로켓 추력실에서 발생하는 Heat Flux에 관한 실험적 연구)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • In this research, we make the thin wall chamber to the measurement of heat flux of using a Kerosene/LOx liquid rocket engine's thrust chamber. The wall thickness is one millimeter. We measured outside wall temperature of thrust chamber by nine thermocouple. We suppose the system to the one-dimension unsteady state, and so the heat flux and heat transfer coefficient of thurst chamber are calculated using one-dimensional the transient energy equation by outside wall temperature. In this case, O/F ratio is 2.0, experimental variation is chamber pressure and we got the heat transfer coefficient of the proportion relation of 0.88 times for the chamber pressure.

Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface

  • Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.655-667
    • /
    • 2017
  • The results of a numerical study on the performance of a propeller operating near a free surface are presented. The numerical simulations were performed for the various advance coefficients and the submergence depths of the model propeller. The effects of the model propeller size were investigated using two different model propeller sizes for all cases. The wave pattern of the free surface and the flow structure around the propeller as well as the hydrodynamic characteristics of the propeller were investigated through simulation results. The thrust and torque fluctuated and the trajectory of the tip vortex was distorted due to the interaction with the free surface. The wave pattern of the free surface was related to the tip vortex of the propeller. The decreases in thrust and torque at the small model propeller were greater than those of the large model propeller. The reduction rate of the thrust and torque increased with the advance coefficient.

A Study for the Improvement Method of Flexible Wedge Gate Valve Operation Capability (Flexible Wedge Gate 밸브의 운전 성능향상 방안에 관한 연구)

  • Kim, Dae-Woong;Lee, Do-Hwan;Kang, Sin-Chul;Kim, In-Whan;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.644-651
    • /
    • 2001
  • The purpose of this study is to develop the improvement method of MOV(Motor Operated Valve) operability without major modification or change of MOV which needs a great expense and manpower. We studied valve stem lubrication, stem packing thrust and actuator control switch which could give an major effect to MOV operability, and found the some consequences. First, the stem/stem-nut friction coefficient and stem factor is significantly effected by stem lubrication state. Second, the measured packing thrust value is appeared higer than the design value for tested valves and the preparation of optimal value selection criteria is needed. Finally, optimization of MOV control switch is another major factor for MOV operability and structual integrity.

  • PDF

Flow Characteristics of Dual Bell Nozzle with Pintle (핀틀을 적용한 듀얼 벨 노즐의 유동 특성)

  • Kim, Jeonghoon;Heo, Junyoung;Ha, Dongsung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.379-382
    • /
    • 2017
  • Flow characteristics of dual bell nozzle with pintle were investigated. Thrust and thrust coefficient were compared with the pintle-bell nozzle of the same condition, and difference according to the pintle stroke was investigated. At stroke 0 mm, the thrust of the dual bell nozzle was about 13.18% higher than the bell nozzle, and when the pintle was backward, it was similar to the bell nozzle. The change in expansion ratio with stroke was considered to be more advantageous for a dual bell nozzle that performs altitude compensation through separation and transition.

  • PDF

Numerical Study on the Variation of Axial Thrust of Rotating Disc with Pump-Out Vane (POV가 부착된 회전 원판의 축추력 변화에 관한 연구)

  • Seong Seong-Mo;Kang Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.230-237
    • /
    • 2006
  • Flows in the cavity with pump out vane are calculated using the CFX-Tascflow CFD code. flow calculations are performed for different values of vane height, numbers, leakage flow rate, and rotational speed. The flow is very complex and three dimensional with strong vortex and leakage flow over the vane. The variations of pressure coefficient and K-factor with these parameters and resulting effects on the thrust and torque are studied. The present study contributes to showing the capability of flow simulation of back cavity with pump-out vane. The calculated results are good enough to be used back cavity design.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD (가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

Heat Transfer Analysis for Variable Thrust Control System Using 1-Way Coupling (일방향 연계를 활용한 연속가변 추력제어 시스템의 열전달 해석)

  • Lee, JiHun;Jang, HanNa;Kim, GyuBin;Cho, JinYeon;Kawk, JaeSu;Ko, JunBok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.388-391
    • /
    • 2017
  • In this study, heat transfer analysis of variable thrust control system have been conducted by using commercial CFD code and FEM code. We Carried out computational fluid dynamics analysis to obtain the temperature and convective heat transfer coefficient of hot gas of variable thrust control system. Data are used as boundary condition for heat transfer analysis using mapping method. Temperature of O-ring for sealing was predicted

  • PDF