• Title/Summary/Keyword: Thrust, Normal fault

검색결과 9건 처리시간 0.02초

Tertiary basin in Korean peninsula and the study of geologic structure at Pohang basin (한반도의 제3기 분지와 포항분지내 지질구조 연구)

  • Lee, Byung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2002년도 암반역학위원회 학술세미나 논문집
    • /
    • pp.3-17
    • /
    • 2002
  • Tertiary Pohang basin distributed in south weatern part of the korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt which is 15 Ma by absolute age data. The basement of the basin is represented by Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems at the basement of the Pohang basin are consist of NNE direction fault, WNW to EW trend fault. NNE fault is not only strike-slip fault but also normal fault. n fault has sinistral strike-slip sene and the EW fault is strike-slip and normal fault. In the Tertiary basin, the fault system is represented by nm strike-slip fault, EW normal fault and NNE thrust fault. By these fault relationships and geometries, it is interpreted that NNE sinistral strike-slip fault and nomal fault have acted at Creceous times. At Tertiary tines, NNE dextralstrike-slip fault and EW normal fault has created. Progressively Tertiary Pohang basin was influenced by the trenspression to make thrust fault and fold, namely as inversion tectonics.

  • PDF

Interpretation of geologic structure in Tertiary Pohang basin, Korea (포항분지내 지각변형 해석)

  • Lee, Byung-Joo;Song, Kyo-Young
    • Economic and Environmental Geology
    • /
    • 제28권1호
    • /
    • pp.69-77
    • /
    • 1995
  • Tertiary Pohang basin distributed in south western part of the Korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt having 15 Ma by absolute age data. The basement of the basin is represented to Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems in the basement of Tertiary Pohang basin are consist of $N20^{\circ}E$ fault, $N60^{\circ}W$ and E-W trend. NNE fault is not only strike-slip but also normal dip-slip. WNW fault has sinistral strike-slip sense and the geometry of E-W fault is strike-slip and normal faults. In the basin, the fault system is represented to $N20^{\circ}E$ strike-slip, E-W normal and NNE thrust faults. By these fault relationship and geometry, it is interpreted that NNE sinistral strike-slip fault and N-S normal faults have acted at the Cretaceous basement. After Miocene NNE dextral strike-slip fault has acted and created E-W normal fault. Progressively Tertiary basin was influenced by the transpression to make thrust and fold, namely inversion tectonics.

  • PDF

The Okdong Fault (옥동단층(玉洞斷層))

  • Kim, Jeong Hwan;Koh, Hee Jae;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • 제22권3호
    • /
    • pp.285-291
    • /
    • 1989
  • The Okdong Fault is situated in Okdong-Hamchang area, the central part of Korea. The area consists of Precambrian gneisses and granitoids, Paleozoic clastic and carbonate rocks, and Mesozoic clastic rocks and igneous intrusives. The Okdong Fault is situated along contact boundary between the lowermost Cambrian Basal Quartzite and Precambrian basements. Mylonites occur as narrow zone which is extended over 100km and is restricted to within 10m-30m along the Okdong Fault. The main features of mylonites are quartz mylonite derived from Cambrian Basal Quartzite and mylonitic granitoids from Precambrian granitoids. Movement sense is deduced as a sinistral strike-slip movement with evidence of rotation of sheared porphyroclasts, rotation of fragments and S/C-bands. The mylonite zone has been reactivated as fault which reveals oblique-slip movement. The fault resurges as faults which reveals normal(to the NW) and reverse(to the SE) dip-slip movement. Normal faults are dominant in the northern and southern part and reverse or thrust faults are dominant in the central part of the Okdong Fault. The thrust movement can be correlated with the Daebo Orogeny of Jurassic Period. Granites and dyke rocks intruded into Paleozoic and Precambrian rocks during Cretaceous Period.

  • PDF

FAULT DISPLACEMENT OF WENCHUAN EARTHQUAKE OBSERVED BY ALOS PALSAR

  • Won, Joong-Sun;Jung, Hyung-Sup
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.418-421
    • /
    • 2008
  • Wenchuan earthquake (Mw 7.9) occurred in Sichuan province, China, May 2008 had resulted in a huge fault displacement around the Lungmenshan fault. Preliminary results of the fault displacement observed by ALOS PALSAR interferometry are presented. The surface deformation by the Wenchuan earthquake was reported up to 10m consisting of thrust- and right-slip compnents. A significant reduction in ionospheric density was also reported. Twenty differential interferograms and twenty multiple aperture SAR interferometry (MAI) pairs were produced over four ALOS tracks. It was observed from differential interferograms that i) LOS deformation decreases steadily from northnorthwest of the Longmenshan fault to the fault, ii) the LOS deformation sharply increases at areas around the fault, and iii) the decrease of the LOS deformation is observed from the Longmenshan fault to the south-southeast of the fault. Horizontal movement of the reverse fault displacement can better be observed by MAI technique, and the MAI phases show that i) the south-southeast directional reverse fault displacement (negative along-track deformation for an ascending track) of the north-northwest block gradually increases to the Longmenshan fault, ii) the reverse fault movement of the south-southeast block is sharply reversed to the north-northwest of the fault, and iii) the northnorthwest movement gradually decreases to the south-southeast of fault. Although the Lonmenshan Fault line is a center of earthquake epicenter, the boundary of surface movement exists to the north-northeast of the fault. Since the ionosphere was not stable even forty days after the mainshock, MAI phases were seriously corrupted by ionospheric effect. It is necessary to acquire more data when the ionosphere recovered to a normal state.

  • PDF

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • 제2권2호
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.

Geological Structures of the Southern Jecheon, Korea: Uplift Process of Dangdusan Metamorphic Complex and Its Implication (옥천대 제천 남부의 지질구조: 당두산변성암복합체의 상승과정과 그 의미)

  • Kihm, You-Hong;Kim, Jeong-Hwan;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • 제21권3호
    • /
    • pp.302-314
    • /
    • 2000
  • Keumseong area in the southern part of the Jecheon city, the Ogcheon Belt, consists of Precambrian Dangdusan Metamorphic Complex, Dori Formation of the Choseon Supergroup, and Jurassic Jecheon Granite. The Dangdusan Metamorphic Complex consists of quartz schist, mica schist. quartzite and pegmatite. The Dori Formation is composed of mainly laminated limestone. The rocks in the study area have been undergone at least three phases of deformations since Paleozoic period. The Dangdusan Metamorphic Complex is outcrop at three areas in the study area, which are exposed along the faults and occurred as inlier within the Dori Formation. Previous authors interpreted the uplift of the Dangdusan Metamorphic Complex by the Dangdusan Fault, but we could not find any evidences related to the Dangdusan Fault. Thus, we interpret the uplift of the Dangdusan Metamorphic Complex due to the D$_2$ Weolgulri and Dangdusan thrusts and post-D$_2$ Jungbodeul, Kokyo and Jungjeonri faults. The uplift of the Busan Metamorphic Complex to the west of the study area was interpreted by ductile deformation. However, the Dangdusan Metamorphic Complex is formed by brittle thrusts and faults in this study. According to deformation sequence, the characters of deformations in the Choseon and Ogcheon suprergroups had been changed from ductile to brittle deformations through the time. Therefore, we interpret the Dangdusan Metamorphic Complex is exposed later than the Busan Metamorphic Complex.

  • PDF

On the penecontemporaneous deformation structures of the Sinri area at the mid western boundary of the Jinan Basin (진안분지 서변 중앙부 신리지역의 준퇴적동시성 변형구조)

  • Lee Young-Up
    • The Korean Journal of Petroleum Geology
    • /
    • 제6권1_2
    • /
    • pp.8-19
    • /
    • 1998
  • In the Sinri area located at the mid western boundary of the Jinan basin, the Manduksan Formation which mainly consists of coarse sandstone narrowly intercalated with shale and the alternation of sand and shale and the Dalgil Formation mainly of shale are distributed. It consists of four lithofacies, such as coarse sandstone, interbedded sandstone/shale, shale and volcanic rock lithofacies. All sediments are interpreted to be deposited by turbidity currents and free fallouts in a lacustrine basin. In these rocks many penecontemporaneous defomation structures are observed such as fold and thrust fault at large scale, and swelling, boudin structure, flame structure, load structure, ptygmatic fold and convolute bedding at small scale. All these structures are developed between upper and lower undisturbed sedimentary strata. Two large folds are similar folds, but lower one gradually developed into concentric shape. The swelling structures by convergence of the sediments are observed in the hinge area and the boudin structures are developed in the limb. The thrust faults including minor folds and sandstone lobes show duplex structure with asymmetric and kink fold on and below in front of the detached sandstone layer. Development of the swellings, boudins and lobes indicates the flexbility of the sediments during deformational episodes. The folds and thrust faults rarely contain fractures relative their scales and lithologies. This feature also indicates the retrievability of sediments during deformation. At the flanks of the thrust faults the normal faults are formed contemporaneously. The deformation structures at small scale such as flame structures, load structures, ptygmatic folds and convolute beddings are syndepositional and penecontemporaneous, which show the effects of tectonic movements. All these deformed sedimentary structures of the Sinri area suggest the continuing tectonic movements during and/or after deposition.

  • PDF

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • 제13권3호
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.