• Title/Summary/Keyword: Three-dimensional Model

Search Result 4,673, Processing Time 0.035 seconds

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Representation of Population Distribution based on Residential Building Types by using the Dasymetric Mapping in Seoul (대시메트릭 매핑 기법을 이용한 서울시 건축물별 주거인구밀도의 재현)

  • Lee, Sukjoon;Lee, Sang Wook;Hong, Bo Yeong;Eom, Hongmin;Shin, Hyu-Seok;Kim, Kyung-Min
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.89-99
    • /
    • 2014
  • The aim of this study is to represent the residential population distribution in Seoul, Korea more precisely through the dasymetric mapping method. Dasymetric mapping can be defined as a mapping method to calculate details from truncated spatial distribution of main statistical data by using ancillary data which is spatial data related to the main data. In this research, there are two types of data used for dasymetric mapping: the population data (2010) based on a output area survey in Seoul as the main data and the building footprint data including register information as ancillary spatial data. Using the binary method, it extracts residential buildings as actual areas where residents do live in. After that, the regression method is used for calculating the weights on population density by considering the building types and their gross floor areas. Finally, it can be reproduced three-dimensional density of residential population and drew a detailed dasymetric map. As a result, this allows to extract a more realistic calculating model of population distribution and draw a more accurate map of population distribution in Seoul. Therefore, this study has an important meaning as a source which can be applied in various researches concerning regional population in the future.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

A STUDY ON ACCURACY OF MAXILLARY REPOSITIONING BY EXTERNAL MEASURING TECHIQUE (외부계측법에 의한 상악골 이동의 위치적 정확도에 대한 평가 연구)

  • Park, Hyung-Sik;Cha, In-Ho;Park, Hyung-Rae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.1
    • /
    • pp.44-52
    • /
    • 1991
  • Internal measurement technique has been commonly and classically used to guide down-fractured maxilla by Le Fort I osteotomy into its new position during intraoperative procedure for correlating preoperative model works with surgery. However, It has been challenged now by several authors due to some problems as its inaccuracy in three-dimensional changes at surgery, difficulty to measure during surgery and impossibility of rechecking at the end of surgery etc. The purpose of this study was to evaluate the accuracy of maxillary movement by external measuring technique and to determine its accuracy between the prediction tracing and a new maxillary position. The results indicate that the external measuring technique was predictable in the vertical, horizontal and transverse change of the maxilla as its prediction, however, it has a tendency to shift the maxilla more anterior and inferior in overall direction than prediction. Post-operative canting difference were mimic, however Ehange of the maxillary dental midline was large and had a right-shifting tendency.1 The precise methods to keep maxillary dental midline as same as prediction and the avoidance of uneven force applied to the mandible for autorotation should be necessary during surgery in use of external measurement technique.

  • PDF

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

A Selection of Building Registration Method to Construct the Three Dimensional Information Cadastral Map (3차원정보지적도 모형 구축을 위한 건물등록 방법 선정)

  • Yang In Tae;Oh Yi Kyun;Yu Young Geol;Chun Gi Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.245-251
    • /
    • 2004
  • Recently, in a field of cadastre, a computerization of cadastral map is in progress with great growth of GSIS field. Also, the needs fer the integration of land and building information are widely increasing for integral-management and its application of various land related information. Through a revision of cadastral laws to replace the existing 2D-Cadastre with the 3D-Cadastre, a legal basis to register the position of buildings and facilities is prepared in the governmental or civil fields. This paper presented 3D-Cadastre theory that has been studied on Europe and surveyed building position directly with Totalstation at cadastral control point after choosing pilot test area, Also, the most efficient surveying method of registering building in a cadastral map is presented with comparing and analyzing building position after surveying digital orthophoto and digital map. And it is constructed a 3D information cadastral map model that can make the integral management of land, building, connecting land recorders, building management ledgers, building titles, building pictures, and related attribute information.

Abolition of restrictions and research on precondition for nominating drone photographing free area (규제혁파, 드론 촬영 자유구역 지정을 위한 선결조건 연구)

  • Seok, Geum-Chan;Park, Gye-Soo;Nam, Soung-Ho;Kim, Young-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.209-217
    • /
    • 2020
  • The background of the research is the following. With the prosperity of drone industry, the government has been actively promoting measures to nominate 'drone photographing free areas'. However, existing laws, and procedures are rather unclear with related environmental factors in discordance with one another. Hence, voices in need for establishing a clear precondition for nominating drone photography free area have been rising. The purpose of the research is to provide measures for the preconditions to establish photography free areas for convenient drone photographing. The research utilizes literary methods, conducting focus group interviews to coordinate with specialists who can participate and discuss so that they can provide improvement measures. The research renders improvement measures in different sectors including 2x items in aviation security law, 8x items in free area nomination and procedure, 4x items in infrastructure establishment and information management area. The expected effects are the following: by attaching drone photography with aviation security law, nominating photography free area can be linked up with the Ministry of Land Infrastructure and Technology. Secondly, by enlarging photography restricted area to upper mid-air, a three dimensional drone security will be possible. Thirdly, by providing a 'Yongin area standard model', free area nomination will become more easy. Future research will focus on enhancing aviation security law regarding drone photographing. In addition, the promotion to nominate free areas for 33x responsible areas in accordance with the National Intelligence service will be required.

Optimization of Ethanol Extraction Conditions for Antioxidants from Zizyphus jujuba Mill. Leaves Using Response Surface Methodology (반응표면분석법을 이용한 대추잎 항산화물질의 에탄올추출조건 최적화)

  • Min, Dul-Lae;Lim, Seok-Won;Ahn, Jun-Bae;Choi, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • The leaves of Zizyphus jujuba have been used for various purposes including medicine and nutrition. In this study, the conditions for the ethanol extraction of antioxidant from Zizyphus jujuba were optimized using response surface methodology (RSM). A Box-Behnken design containing 15 experimental runs with three replicates was employed to study the effects of solvent extraction conditions such as extraction temperature ($^{\circ}C$, $X_1$), extraction time (min, $X_2$), and ethanol concentration (%, $X_3$) on the extraction yield of antioxidants from Zizyphus jujuba. The yields of total polyphenols and total flavonoid, and electron donating activity (EDA) were considered as response variables. The second-order polynomial model gave a satisfactory description of the experimental results showing different patterns of extraction conditions with variation in the linear, quadratic, and interaction effects of the independent variables. Based on four-dimensional RSM, one of the optimized sets of conditions was 45% ethanol, $45^{\circ}C$, and an extraction time of 15 min. Under the optimal conditions, the predicted values were 177.64 mg/g dry basis, 35.99 mg/g dry basis, and 86.14% Vit.C equivalents for total polyphenols, total flavonoids, and EDA, respectively. The experimental values showed good agreements with the predicted values.

Thermal Insulation Effect of Inflatable Life Vest on the Drowned Individual estimated by Numerical Analysis (익수자 체온 저하에 미치는 팽창식 구명동의의 단열효과 수치 분석)

  • Kim, Sung Chan;Lee, Kyung Hoon;Hwang, Se Yun;Lee, Jin Sung;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.285-291
    • /
    • 2015
  • Exposure to cold sea water can be life-threatening to the drowned individual. Although appropriate life jacket can be usually be provided for the buoyance at the drowning accident, heat loss can make the drowned individual experience the hypothermia. Inflatable life jackets filled with inflatable air pocket can increase the thermal protection as well as the buoyancy force. Because it is important to know how the human body behaves unde the different life jacket, present study compares the thermal insulation capacity of solid type life jacket with that of inflatable life jacket. In order to represent the insulation capacity of life jacket, thermal resistance is estimated based on the assumption of steady-state. Also, a transient three-dimensional thermal distribution of the thigh is analyzed by using finite element method implementing the Pennes bioheat equation. The finite element model is a segmental, multi-layered representation of the body section which considers the heat conduction within tissue, bone, fat and local blood flow rate.