DOI QR코드

DOI QR Code

Three-Dimensional Resistivity Modeling by Serendipity Element

Serendipity 요소법에 의한 전기비저항 3차원 모델링

  • Lee, Keun-Soo (Department of Geophysics, Kangwon National University) ;
  • Cho, In-Ky (Department of Geophysics, Kangwon National University) ;
  • Kang, Hye-Jin (Department of Geophysics, Kangwon National University)
  • Received : 2012.02.01
  • Accepted : 2012.02.24
  • Published : 2012.02.29

Abstract

A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

전기비저항 탐사는 자동측정과 정밀한 자료 획득이 가능해 지면서 토목 및 환경문제 등 다양한 분야에 적용되고 있다. 이에 따라 시간에 따른 지하의 변화를 정밀하게 파악할 수 있는 전기비저항 모니터링 기법이 도입되면서 시간경과 모니터링 자료의 보다 정확한 모델링 기법과 역산 기법의 개발이 요구된다. 여기서는 3차원 전기비저항 모델링으로 요소의 변형을 통해 임의 형상의 이상체 및 복잡한 지형의 굴곡을 표현하기 쉬운 유한요소법을 사용하였다. 유한요소법에서 선형요소(1차 요소)는 시스템 방정식의 구성이 간단하고 대역폭이 좁다는 장점이 있다. 하지만 선형요소는 요소 또는 절점의 수에 따라 해의 수렴속도가 느리며 또한 정확성에 한계가 있다. 일반적으로 유한요소법에서 해의 정확성을 높이기 위해 고차요소를 사용한다. 본 논문에서는 고차의 Serendipity 요소를 사용하는 3차원 전기비저항 모델링 프로그램을 개발하였다. 선형요소법과 Serendipity 요소법의 비교를 위해 직육면체의 이상체 모델에 적용하였을 때, 선형요소법의 결과에 비해 Serendipity 요소를 사용하는 3차원 전기비저항 모델링의 결과에서 보다 정확하게 나타나는 것을 확인하였다.

Keywords

References

  1. 박권규, 1994, 유한요소법을 이용한 3차원 전기비저항 모델링 및 지형보정에 관한 연구, 공학석사 학위논문, 서울대학교.
  2. 오석훈, 1994, 유한요소법을 이용한 2차원 전기탐사의 지형보정, 교육학석사 학위논문, 서울대학교.
  3. 조인기, 1989, 전기 및 자기 비저항법의 3차원 모델링 및 해석, 공학박사학위논문, 서울대학교.
  4. Baker, R. and Moore, J., 1998, The application of time-lapse electrical tomography in groundwater studies, The Leading Edge, 1454-1458.
  5. Chun, K. S., and Kassegne, S. K., 2005, A new, efficient 8-node Serendipity element with explicit and assumed strains formulations, International Journal for Computational Methods in Engineering Science Mechanics, 6, 285-292. https://doi.org/10.1080/155022891009486
  6. Coggon, J. H., 1971, Electromagnetic and electrical modeling by the finite element method, Geophysics, 36, 132-155. https://doi.org/10.1190/1.1440151
  7. Ergatoudis, J. G., Irons, B. M., and Zienkiewicz, O. C., 1968, Curved isoparametric quadrilateral elements for finite element analysis, International Journal of Solids Structure, 4, 31-42. https://doi.org/10.1016/0020-7683(68)90031-0
  8. Fox, R. C., Hohmann, G. W., Killpack., T. J, and Rijo, L., 1980, Topographic effects in resistivity and induced-polarization surveys, Geophysics, 45, 75-93. https://doi.org/10.1190/1.1441041
  9. Hohmann, G. W., 1975, Three-dimensional induced polarization and electromagnetic modeling, Geophysics, 40, 309-324. https://doi.org/10.1190/1.1440527
  10. Horlin, N. E., Nordstrom, M., and Goransson, P., 2001, A 3-D hierarchical FE formulation of BIOT'S equations for elastoacoustic modelling of porous media, Journal of Sound and Vibration, 245, 633-652. https://doi.org/10.1006/jsvi.2000.3556
  11. Kotigua, P. R., and Silvester, P. P., 1982, Vector potential formulation for three-dimensional magnetostatics, Journal of Applied Physics, 53, 8399-8401. https://doi.org/10.1063/1.330372
  12. Rathod, H. T., and Sridevi, K., 2001, General complete Lagrange interpolation with applications to three-dimensional finite element analysis, Computer Methods in Applied Mechanics and Engineering, 190, 3325-3368. https://doi.org/10.1016/S0045-7825(00)00267-X