Optimization of Ethanol Extraction Conditions for Antioxidants from Zizyphus jujuba Mill. Leaves Using Response Surface Methodology

반응표면분석법을 이용한 대추잎 항산화물질의 에탄올추출조건 최적화

  • Min, Dul-Lae (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lim, Seok-Won (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Ahn, Jun-Bae (Department of Food Service Industry, Seowon University) ;
  • Choi, Young-Jin (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • 민들레 (서울대학교 농업생명과학대학 농생명공학부 및 농업생물신소재연구소) ;
  • 임석원 (서울대학교 농업생명과학대학 농생명공학부 및 농업생물신소재연구소) ;
  • 안준배 (서원대학교 식품과학부 외식산업학과) ;
  • 최영진 (서울대학교 농업생명과학대학 농생명공학부 및 농업생물신소재연구소)
  • Received : 2010.10.08
  • Accepted : 2010.10.19
  • Published : 2010.12.31

Abstract

The leaves of Zizyphus jujuba have been used for various purposes including medicine and nutrition. In this study, the conditions for the ethanol extraction of antioxidant from Zizyphus jujuba were optimized using response surface methodology (RSM). A Box-Behnken design containing 15 experimental runs with three replicates was employed to study the effects of solvent extraction conditions such as extraction temperature ($^{\circ}C$, $X_1$), extraction time (min, $X_2$), and ethanol concentration (%, $X_3$) on the extraction yield of antioxidants from Zizyphus jujuba. The yields of total polyphenols and total flavonoid, and electron donating activity (EDA) were considered as response variables. The second-order polynomial model gave a satisfactory description of the experimental results showing different patterns of extraction conditions with variation in the linear, quadratic, and interaction effects of the independent variables. Based on four-dimensional RSM, one of the optimized sets of conditions was 45% ethanol, $45^{\circ}C$, and an extraction time of 15 min. Under the optimal conditions, the predicted values were 177.64 mg/g dry basis, 35.99 mg/g dry basis, and 86.14% Vit.C equivalents for total polyphenols, total flavonoids, and EDA, respectively. The experimental values showed good agreements with the predicted values.

대추잎 항산화 물질의 고효율 추출을 위한 에탄올 용매추출조건을 반응표면분석법을 사용하여 최적화하였다. Box-Behnken design에 따라 추출공정 조작변수(온도, 시간, 에탄올 농도)를 독립변수로, 이에 따라 영향을 받는 종속변수(총 폴리페놀 함량, 총 플라보노이드 함량, 전자공여능)를 설정하여 실험하였다. 추출물의 총 폴리페놀 함량과 총 플라보노이드 함량은 시간과 온도의 영향을 거의 받지 않으며, 용매비가 높을수록 증가하다가 최고점을 보인 후 다시 감소하는 경향을 나타내었다. 전자공여능 또한 시간과 온도의 영향보다는 용매비에 영향을 많이 받는데, 에탄올 농도가 높을수록 전자공여능이 높게 측정되었다. 추출물의 특성을 모두 만족시키는 최적 추출조건 범위 내에서 임의의 조작조건(온도 $45^{\circ}C$, 시간 15분, 에탄올 농도 45%)을 설정하였다. 최적조건에서 예측값과 실험값을 비교한 결과, 유사한 값을 보여주어 회귀식이 신뢰할 수 있음을 알 수 있었다.

Keywords

References

  1. Rice-Evans C, Packer L. Flavonoids in Health and Disease. Base: Marcel Dekker, New York, NY, USA. p. 169 (2003)
  2. Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 81: 215S-217S (2005)
  3. Cheong WJ, Park MH, Kang GW, Ko JH, Seo YJ. Determination of cathechin compounds in Korea green tea infusions under various extraction conditions by high performance liquid chromatography. Bull. Korean Chem. Soc. 26: 747-754 (2005) https://doi.org/10.5012/bkcs.2005.26.5.747
  4. Koh YJ, Cha DS, Choi HD, Park YK, Choi IW. Hot water extraction optimization of dandelion leaves to increase antioxidant activity. Korean J. Food Sci. Technol. 40: 283-289 (2008)
  5. Kim YS, Kim R, Kim JH, Ji JR, Choi WD, Park YK. Optimization of extraction conditions of polyphenolic compunds from apple pomase by response surfance methodology. Korean J. Food Sci. Technol. 41: 245-250 (2009)
  6. Rowland I. Optimal nutrition: Fibre and phytochemicals. Proc. Nutr. Soc. 58: 415-419 (1999) https://doi.org/10.1017/S0029665199000543
  7. Fang S, Wang Z, Hu X, Datta AK. Hot-air drying of whole fruit Chinese jujube (Zizyphus jujube Miller): Physicochemical properties of dried products. Int. J. Food Sci. Tech. 44: 1415-1421 (2009) https://doi.org/10.1111/j.1365-2621.2009.01972.x
  8. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q. Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujube Mill. var. inermis (Bunge) Rehd). Food Chem. 114: 547-552 (2009) https://doi.org/10.1016/j.foodchem.2008.09.085
  9. Jin Q, Park JR, Kim JB, Cha MH. Physiological activity of Zizyphus jujuba leaf extract. J. Korean Soc. Food Sci. Nutr. 28: 593-598 (1999)
  10. Crawford M. Wanatca Year Book: The Jujube. West Australian Nut and Tree Crop Association (Inc.), Subiaco, Australia. pp. 37- 42 (2002)
  11. Jin Q, Park JR, Kim JB, Cha MH. Changes in chemical composition of jujuba leaf during growth. J. Korean Soc. Food Sci. Nutr. 28: 505-510 (1999)
  12. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  13. Park YJ, Kang MH, Kim JI, Park OJ, Lee MS, Jang HD. Changes of vitamin C and superoxide dismutase-like activity of persimmon leaf tea by processing method and extraction condition. Korean J. Food Sci. Technol. 27: 281-285 (1995)
  14. Turkmen N, Sari F, Sedat Velioglu Y. Effect of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin- Ciocalteu methods. Food Chem. 99: 835-841 (2006) https://doi.org/10.1016/j.foodchem.2005.08.034
  15. Santos-Buelga C, Williamson G, Saltmarsh M. Methods in polyphenol analysis. Royal Society of Chemistry, Cambridge, England. pp. 1-16 (2003)
  16. Box GEP, Behnken DW. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475 (1960) https://doi.org/10.2307/1266454
  17. Moreno MIN, Isla MIN, Sampietro AR, Vattuone MA. Comparison of the free radical scavenging activity of propolis form several region of Argentina. J. Enthropharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  18. Park JW, Lee YJ, Yoon S. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J. Food Culture 22: 353-358 (2007)
  19. Jeong JA, Kwon SH, Kim YJ, Shin CS, Lee CH. Investigation of antioxidative and tyrosinase inhibitory activities of the seed extracts. Korean J. Plant Res. 37: 465-471 (2008)
  20. Abad-Garcia B, Berrueta LA, Lopez-Marquez DM, Crespo-Ferrer I, Gallo B, Vicente F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Choromatogr. 1154: 87-86 (2007) https://doi.org/10.1016/j.chroma.2007.03.023
  21. Kim HK, Do JR, Hong JH, Lee GD. Optimization for functional properties of cabbage extracts. Korean J. Food Preserv. 12: 591-599 (2005)
  22. Silva EM, Pompeu DR, Larondelle Y, Rogez H. Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Sep. Purif. Technol. 53: 274-280 (2007) https://doi.org/10.1016/j.seppur.2006.07.012
  23. Silva EM, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga leaves using response surface methodology. Sep. Purif. Tech. 55: 381-387 (2007) https://doi.org/10.1016/j.seppur.2007.01.008
  24. Bilia AR, Bergonzi MC, Mazzi G, Vincieri FF. Analysis of plant complex matrices by use of nuclear magnetic resonance spectroscopy: St. John's wort extract. J. Agr. Food Chem. 49: 2115-2124 (2001) https://doi.org/10.1021/jf000999+
  25. Lim TS, Kwon OJ, Kwon JH, Kim HK. Monitoring of extraction yields and functional properties of ginger extracts using response surface methodology. J.Korean Soc. Food Sci. Nutr. 36: 348-354 (2007) https://doi.org/10.3746/jkfn.2007.36.3.348
  26. Woo KS, Lee SH, Noh JW, Hwang IG, Lee YR, Park HJ, Lee JS, Kang TS, Jeong HS. Optimization of extraction conditions for dried jujube by response surface methodology. J. Korean Soc. Food Sci. Nutr. 38: 244-251 (2009) https://doi.org/10.3746/jkfn.2009.38.2.244