• Title/Summary/Keyword: Three component coupling

Search Result 48, Processing Time 0.031 seconds

GLOBAL COUPLING EFFECTS ON A FREE BOUNDARY PROBLEM FOR THREE-COMPONENT REACTION-DIFFUSION SYSTEM

  • Ham, Yoon-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.659-676
    • /
    • 2006
  • In this paper, we consider three-component reaction-diffusion system. With an integral condition and a global coupling, this system gives us an interesting free boundary problem. We shall examine the occurrence of a Hopf bifurcation and the stability of solutions as the global coupling constant varies. The main result is that a Hopf bifurcation occurs for global coupling and this motion is transferred to the stable motion for strong global coupling.

Asymmetric Synthesis of 12-epi-$PGF_{2α}$ by a Palladium-Mediated, Three-Component Coupling Reaction

  • 이남호;Richard C. Larock
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.859-863
    • /
    • 1995
  • The prostaglandin analogue 12-epi-PGF2α (2) has been synthesized from optically active cis-4-t-butyldimethylsilyloxy-2-cyclopenten-1-ol (4b) in 4 steps in an overall yield of 21%. An extremely efficient Pd(Ⅱ)-mediated, three-component coupling reaction is employed to obtain the key intermediate 9.

Tin-Free Three-Component Coupling Reaction of Aryl Halides, Norbornadiene (or Norbornene), and Alkynols Using a Palladium Catalyst

  • Choi, Cheol-Kyu;Hong, Jin-Who;Tomita, Ikuyoshi;Endo, Takeshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.112-118
    • /
    • 2002
  • Good-to-excellent yields of 2,3-Disubstituted norbornenes (or norbornanes) were obtained using a Pd/Cu catalyzed three-component ternary coupling reaction of aryl halides, norbornadiene (or norbornene), and alkynols in toluene at $100{\circ}C$ in the presence of 5.5 M NaOH as a base and benzyltriethylammonium chloride as a phase transfer catalyst. The results of experiments using various aromatic halides suggest that the ternary coupling reaction is promoted by bromide.

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

Sensing method of multi-component forces and moments using a column structure (기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구)

  • Shin, H.H.;Kang, D.I.;Park, Y.K.;Kim, J.H.;Joo, J.W.;Kim, O.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

A Simple and Efficient One-Pot Three-Component Synthesis of Propargylamines Using Bismuth (III) Chloride

  • Teimouri, Abbas;Chermahini, Alireza Najafi;Narimani, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1556-1560
    • /
    • 2012
  • A simple highly versatile and efficient method has been developed for the three-component coupling of aldehydes, amines and alkynes to prepare propargylamines, in the presence of a catalytic amount of $BiCl_3$. The advantages of methods are high yield, mild reaction conditions, no environmental pollution and easy work up procedure.

Component Identification using Domain Analysis based on Clustering (클러스터링에 기반 도메인 분석을 통한 컴포넌트 식별)

  • Haeng-Kon Kim;Jeon-Geun Kang
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.479-490
    • /
    • 2003
  • CBD is a software development approach based on reusable component and supports easy modification and evolution of software. For the success of this approach, a component must be developed with high cohesion and low coupling. In this paper, we propose the two types of clustering analysis technique based on affinity between use-cases and classes and propose component identification method applying to this technique. We also propose component reference model and CBD methodology framework and perform a ease study to demonstrate how the affinity-based clustering technique is used in component identification method. Component identification method contains three tasks such as component extraction, component specification and component architecting. This method uses object-oriented concept for identifying component, which improves traceability from analysis to implementation and can automatically extract component. This method reflects the low coupling-high cohesion principle for good modularization about reusable component.

  • PDF

The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance (브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측)

  • 박용호;김기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

THE DEVELOPMENT AND ASSESSMENT STRATEGY OF A THERMAL HYDRAULICS COMPONENT ANALYSIS CODE (열수력 기기해석용 CUPID 코드 개발 및 평가 전략)

  • Park, I.K.;Cho, H.K.;Lee, J.R.;Kim, J.;Yoon, H.Y.;Lee, H.D.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.30-48
    • /
    • 2011
  • A three-dimensional thermal-hydraulic code, CUPID, has been developed for the analysis of transient two-phase flows at component scale. The CUPID code adopts a two-fluid three-field model for two-phase flows. A semi-implicit two-step numerical method was developed to obtain numerical solutions on unstructured grids. This paper presents an overview of the CUPID code development and assessment strategy. The governing equations, physical models, numerical methods and their improvements, and the systematic verification and validation processes are discussed. The code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER, are also presented.