DOI QR코드

DOI QR Code

A Simple and Efficient One-Pot Three-Component Synthesis of Propargylamines Using Bismuth (III) Chloride

  • Teimouri, Abbas (Department of Chemistry, Payame Noor University (PNU)) ;
  • Chermahini, Alireza Najafi (Department of Chemistry, Isfahan University of Technology) ;
  • Narimani, M. (Department of Chemistry, Payame Noor University (PNU))
  • Received : 2011.12.26
  • Accepted : 2012.02.06
  • Published : 2012.05.20

Abstract

A simple highly versatile and efficient method has been developed for the three-component coupling of aldehydes, amines and alkynes to prepare propargylamines, in the presence of a catalytic amount of $BiCl_3$. The advantages of methods are high yield, mild reaction conditions, no environmental pollution and easy work up procedure.

Keywords

References

  1. Dyker, G. Handbook of C-H Transformations; Wiley-VCH: Weinheim, 2005
  2. Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6
  3. Wei, C.; Li, Z.; Li, C. J. Org. Lett. 2003, 5, 4473. https://doi.org/10.1021/ol035781y
  4. Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584. https://doi.org/10.1021/ja0359299
  5. Matyus, P.; Dajka-Halasz, B.; Foldi, A.; Haider, N.; Barlocco, D.; Magyar, K. Curr. Med. Chem. 2004, 11, 1285. https://doi.org/10.2174/0929867043365305
  6. Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org. Chem. 1995, 60, 4999. https://doi.org/10.1021/jo00121a018
  7. Naota, I.; Takaya, H.; Murahashi, S. I. Chem. Rev. 1998, 98, 2599. https://doi.org/10.1021/cr9403695
  8. Zimmermann, K.; Waldmeier, P. C.; Tatton, W. G. Pure Appl. Chem. 1999, 71, 2039. https://doi.org/10.1351/pac199971112039
  9. Boulton, A. A.; Davis, B. A.; Durden, D. A.; Dyck, L. E.; Juorio, A. V.; Li, X. M.; Paterson, I. A.; Yu, P. H. Drug Dev. Res. 1997, 42, 150. https://doi.org/10.1002/(SICI)1098-2299(199711/12)42:3/4<150::AID-DDR6>3.0.CO;2-P
  10. Jung, M. E.; Huang, A. Org. Lett. 2000, 2, 2659. https://doi.org/10.1021/ol0001517
  11. Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. https://doi.org/10.1021/ja048627v
  12. Lo, V. K. Y.; Liu, Y.; Wong, M. K.; Che, C. M. Org. Lett. 2006, 8, 1529. https://doi.org/10.1021/ol0528641
  13. Ji, J.-X.; Au-Yeung, T. T. L.; Wu, J.; Yip, C. W.; Chan, A. S. C. Adv. Synth. Catal. 2004, 346, 42. https://doi.org/10.1002/adsc.200303148
  14. Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004, 6, 1001. https://doi.org/10.1021/ol049936t
  15. Huma, H. Z. S.; Halder, R.; Karla, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485. https://doi.org/10.1016/S0040-4039(02)01240-6
  16. Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 676.
  17. Wei, C.; Li, C.- J. J. Am. Chem. Soc. 2002, 124, 5638. https://doi.org/10.1021/ja026007t
  18. Wei, C.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5749. https://doi.org/10.1073/pnas.0307150101
  19. Gommarman, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763. https://doi.org/10.1002/anie.200352578
  20. Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F. J. Mol. Catal. A: Chem. 2006, 260, 128. https://doi.org/10.1016/j.molcata.2006.07.003
  21. Gommermann, N.; Knochel, P. Chem. Eur. J. 2006, 12, 4380. https://doi.org/10.1002/chem.200501233
  22. Bisai, A.; Singh, V. K. Org. Lett. 2006, 8, 2405. https://doi.org/10.1021/ol060793f
  23. Li, C.-J.; Wei, C. Chem. Commun. 2002, 268.
  24. Park, S. B.; Alper, H. Chem. Commun. 2005, 1315.
  25. Black, D. A.; Arndtsen, B. A. Tetrahedron 2005, 61, 11317. https://doi.org/10.1016/j.tet.2005.09.096
  26. Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 143. https://doi.org/10.1021/ol0526165
  27. Gommermann, N.; Knochel, P. Chem. Commun. 2004, 2324.
  28. Gommermann, N.; Knochel, P. Synlett 2005, 2799.
  29. Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F.; Celentano, G. J. Org. Chem. 2006, 71, 2064. https://doi.org/10.1021/jo052481g
  30. Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S. R. Tetrahedron Lett. 2007, 48, 7184. https://doi.org/10.1016/j.tetlet.2007.07.196
  31. Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245. https://doi.org/10.1021/ja993074n
  32. Pinet, S.; Pandya, S. U.; Chavant, P. Y.; Ayling, A.; Vallee, Y. Org. Lett. 2002, 4, 1463. https://doi.org/10.1021/ol025618n
  33. Zani, L.; Alesi, S.; Cozzi, P. G.; Bolm, C. J. Org. Chem. 2006, 71, 1558. https://doi.org/10.1021/jo052273o
  34. Lee, K.-Y.; Lee, C.-G.; Na, J.-E.; Kim, J.-N. Tetrahedron Lett. 2005, 46, 69. https://doi.org/10.1016/j.tetlet.2004.11.046
  35. Jiang, B.; Si, Y.-G. Tetrahedron Lett. 2003, 44, 6767. https://doi.org/10.1016/S0040-4039(03)01674-5
  36. Fischer, C.; Carreira, E. M. Org. Lett. 2004, 6, 1497. https://doi.org/10.1021/ol049578u
  37. Jiang, B.; Si, Y.-G. Angew. Chem., Int. Ed. 2004, 43, 216. https://doi.org/10.1002/anie.200352301
  38. Chen, W. W.; Nauyen, R. V.; Li, C. J. Tetrahedron Lett. 2009, 50, 2895. https://doi.org/10.1016/j.tetlet.2009.03.182
  39. Jadav, J. S.; Reddy, B. V. S.; Gopal, A. V. H.; Patil, K. S. Tetrahedron Lett. 2009, 50, 3993.
  40. Zhang, Y.; Li, P.; Wang, M.; Wang, L. J. Org. Chem. 2009, 74, 4364. https://doi.org/10.1021/jo900507v
  41. Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319. https://doi.org/10.1021/ol017022q
  42. Sakaguchi, S.; Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534. https://doi.org/10.1002/1521-3773(20010702)40:13<2534::AID-ANIE2534>3.0.CO;2-2
  43. Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Chem. Commun. 2004, 1638.
  44. Hua, L. P.; Lei, W. Chin. J. Chem. 2005, 23, 1076. https://doi.org/10.1002/cjoc.200591076
  45. Samai, S.; Nandi, G. C.; Singh, M. S. Tetrahedron Lett. 2010, 51, 5555. https://doi.org/10.1016/j.tetlet.2010.08.043
  46. Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2003, 5, 3273. https://doi.org/10.1021/ol035138b
  47. Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4244. https://doi.org/10.1002/anie.200352081
  48. Kuninobu, Y.; Inoue, Y.; Takai, K. Chem. Lett. 2006, 35, 1376. https://doi.org/10.1246/cl.2006.1376
  49. Reddy, K. M.; Babu, N. S.; Prasad, P. S. S.; Lingaiah, N. Tetrahedron Lett. 2006, 47, 7563. https://doi.org/10.1016/j.tetlet.2006.08.094
  50. Zhang, X.; Corma, A. Angew. Chem., Int. Ed. 2008, 47, 4358. https://doi.org/10.1002/anie.200800098
  51. Li, P.; Wang, L.; Zhang, Y.; Wang, M. Tetrahedron Lett. 2008, 49, 6650. https://doi.org/10.1016/j.tetlet.2008.09.026
  52. Yan, W.; Wang, R.; Xu, Z.; Xu, J.; Lin, L.; Shen, Z.; Zhou, Y. J. Mol. Catal. A: Chem. 2006, 255, 81. https://doi.org/10.1016/j.molcata.2006.03.055
  53. Wang, S.; He, X.; Song, L.; Wang, Z. Synlett 2009, 447.
  54. Li, P.; Wang, L. Tetrahedron 2007, 63, 5455. https://doi.org/10.1016/j.tet.2007.04.032
  55. Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. Tetrahedron Lett. 2004, 45, 7319. https://doi.org/10.1016/j.tetlet.2004.08.004
  56. Wang, M.; Li, P.; Wang, L. Eur. J. Org. Chem. 2008, 2255.
  57. Bisai, A.; Singh, V. K. Tetrahedron 2011, In Press
  58. Sreedhar, B.; Reddy, P. S.; Krishna, C. S. V.; Babu, P. V. Tetrahedron Lett. 2007, 48, 7882. https://doi.org/10.1016/j.tetlet.2007.08.116
  59. Likhar, P. R.; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L.; De, R. L. Synlett 2007, 2301.
  60. Namitharan, K.; Pitchumani, K. Eur. J. Org. Chem. 2010, 411.
  61. Maggi, R.; Bello, A.; Oro, C.; Sartori, G.; Soldi, L. Tetrahedron 2008, 64, 1435. https://doi.org/10.1016/j.tet.2007.11.043
  62. Patil, M. K.; Keller, M.; Reddy, B. M.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2008, 4440.
  63. Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. B. S.; Venkanna, G. T. Tetrahedron Lett. 2007, 48, 7332. https://doi.org/10.1016/j.tetlet.2007.08.020
  64. Mukhopadhyay, C.; Rana, S. Catal. Commun. 2009, 11, 285. https://doi.org/10.1016/j.catcom.2009.10.016
  65. Kantam, M. L.; Yadav, J.; Laha, S.; Jha, S. Synlett 2009, 1791.
  66. Kidwai, M.; Bansal, V.; Mishra, N. K.; Kumar, A.; Mozumdar, S. Synlett 2007, 1581.
  67. Kantam, M. L.; Laha, S.; Yadav, J.; Bhargava, S. Tetrahedron Lett. 2008, 49, 3083. https://doi.org/10.1016/j.tetlet.2008.03.053
  68. Aliaga, M. J.; Ramon, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8, 43. https://doi.org/10.1039/b917923b
  69. Bhatte, K. D.; Sawant, D. N.; Deshmukh, K. M. Bhanage, B. M. Catal. Commun. 2011, 16, 114. https://doi.org/10.1016/j.catcom.2011.09.012
  70. Rahman, M.; Bagdi, A. Kr.; Majee, A.; Hajra, A. Tetrahedron Lett. 2011, 52, 4437. https://doi.org/10.1016/j.tetlet.2011.06.067
  71. Sreedhar, B.; Suresh Kumar, A.; Reddy, P. S. Tetrahedron Lett. 2010, 51, 1891. https://doi.org/10.1016/j.tetlet.2010.02.016
  72. Sreedhar, B.; Reddy, P. S.; Prakash, B. V.; Ravindra, A. Tetrahedron Lett. 2005, 46, 7019. https://doi.org/10.1016/j.tetlet.2005.08.047
  73. Leadbeater, N. E.; Torenius, H. M.; Tye, H. Mol. Divers. 2003, 7, 135. https://doi.org/10.1023/B:MODI.0000006822.51884.e6
  74. Du, W. Q.; Zhang, J. M.; Wu, R.; Liang, Q.; Zhu, S. Z. J. Fluorine Chem. 2008, 129, 695. https://doi.org/10.1016/j.jfluchem.2008.06.015
  75. Alakesh, B.; Vinod, K. S. Org. Lett. 2006, 8, 2405. https://doi.org/10.1021/ol060793f
  76. Leonard, N. M.; Wieland, L. C.; Mohan, R. S. Tetrahedron 2002, 58, 8373. https://doi.org/10.1016/S0040-4020(02)01000-1
  77. Matano, Y.; Ikegami, T. In Organobismuth Chemistry; Suzuki, H., Manato, Y., Eds.; Elsevier: New York, 2001; Chapter 2; pp 21-245.
  78. De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407. https://doi.org/10.1016/j.tetlet.2004.08.071
  79. Suzuki, H.; Ikegami, T.; Matano, Y. Synthesis 1997, 249.
  80. Soleimani, E.; Khodaei, M. M.; Koshvandi, A. T. K. Chinese Chem. Lett. 2011, 22, 927. https://doi.org/10.1016/j.cclet.2011.01.012
  81. Li, H.; Zeng, H.; Shao, H. Tetrahedron Lett. 2009, 50, 6858. https://doi.org/10.1016/j.tetlet.2009.09.131
  82. De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 8345. https://doi.org/10.1016/j.tetlet.2005.09.161
  83. Sabitha, G.; Reddy, E. V.; Maruthi, C.; Yadav J. S. Tetrahedron Lett. 2002, 43, 1573. https://doi.org/10.1016/S0040-4039(02)00018-7
  84. Sabitha, G.; Reddy, E. V.; Yadav, J. S.; Krishna, K. V. S.; Sankar, R. Tetrahedron Lett. 2002, 43, 4029. https://doi.org/10.1016/S0040-4039(02)00704-9
  85. Li, Z.; Wei, C.; Chen, L.; Varma, R. S.; Li, C. J. Tetrahedron Lett. 2004, 45, 2443. https://doi.org/10.1016/j.tetlet.2004.01.044
  86. Teimouri, A.; Najafi Chermahini, A. Journal of Molecular Catalysis A: Chemical 2011, 346, 39. https://doi.org/10.1016/j.molcata.2011.06.007
  87. Teimouri, A.; Najafi Chermahini, A. Arabian Journal of Chemistry, In Press, Corrected Proof, Available online 2 June 2011.
  88. Dabbagh, H. A.; Teimouri, A.; Najafi Chermahini, A.; Shiasi, R. Spectrochimica Acta Part A 2007, 67, 437. https://doi.org/10.1016/j.saa.2006.07.037
  89. Dabbagh, H. A.; Teimouri, A.; Najafi Chermahini, A. Applied Catalysis B: Environmental. 2007, 76, 24. https://doi.org/10.1016/j.apcatb.2007.05.002

Cited by

  1. Synthesis, Crystal Structure of Tetra-Nuclear Macrocyclic Cu(II) Complex Material and Its Application as Catalysts for A3 Coupling Reaction vol.24, pp.6, 2014, https://doi.org/10.1007/s10904-014-0077-1
  2. Polymer-anchored copper(II) complex: an efficient reusable catalyst for the synthesis of propargylamines vol.28, pp.10, 2014, https://doi.org/10.1002/aoc.3193
  3. –graphene oxide nanocomposites prepared by a simple method vol.44, pp.25, 2015, https://doi.org/10.1039/C5DT01260K
  4. ) coupling catalyzed by a highly efficient dicopper complex vol.5, pp.47, 2015, https://doi.org/10.1039/C5RA04729C
  5. Tin(II) Chloride Catalyzed Multicomponent Synthesis of Propargylamines and Intramolecular [3+2] Cycloaddition vol.5, pp.2, 2016, https://doi.org/10.1002/ajoc.201500471
  6. ) Schiff base complex immobilized on graphene oxide and its catalytic application in the green synthesis of propargylamines vol.6, pp.19, 2016, https://doi.org/10.1039/C5RA25209A
  7. Immobilized Gold Nanoparticles Prepared from Gold(III)-Containing Ionic Liquids on Silica: Application to the Sustainable Synthesis of Propargylamines vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112975
  8. [Zn(l-proline)2] Catalyzed One-Pot Synthesis of Propargylamines Under Solvent-Free Conditions vol.148, pp.9, 2018, https://doi.org/10.1007/s10562-018-2449-6
  9. Synthesis of N,N‐Disubstituted 3‐Amino‐1,4‐diynes and 3‐Amino‐1‐ynes by Addition of Alkynyldimethylaluminum Reagents to N,N‐Disubstituted Formamides and vol.2014, pp.23, 2012, https://doi.org/10.1002/ejoc.201402464
  10. Synthesis and Reactivity of Propargylamines in Organic Chemistry vol.117, pp.24, 2017, https://doi.org/10.1021/acs.chemrev.7b00343
  11. Cobalt‐Catalyzed Three‐Component Synthesis of Propargylamine Derivatives and Sonogashira Reaction: A Comparative Study between Co‐NPs and Co‐NHC@MWCNTs vol.4, pp.15, 2012, https://doi.org/10.1002/slct.201803586
  12. ZnCl2 loaded TiO2 nanomaterial: an efficient green catalyst to one-pot solvent-free synthesis of propargylamines vol.9, pp.56, 2019, https://doi.org/10.1039/c9ra06693d