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GLOBAL COUPLING EFFECTS ON A FREE
BOUNDARY PROBLEM FOR THREE-COMPONENT
REACTION-DIFFUSION SYSTEM

YOoONMEE HaMm

ABSTRACT. In this paper, we consider three-component reaction-
diffusion system. With an integral condition and a global coupling,
this system gives us an interesting free boundary problem. We shall
examine the occurrence of a Hopf bifurcation and the stability of
solutions as the global coupling constant varies. The main result is
that a Hopf bifurcation occurs for global coupling and this motion
is transferred to the stable motion for strong global coupling.

1. Introduction and interface equation of motion

A reaction-diffusion system has been modeled in the study of the
pattern formation in biology [13, 15], chemistry [5, 12], and physics
[19, 20, 22]. If the diffusion of the activator is small compared to that
of the inhibitor in the two-component system, the stationary solution
should undergo certain instabilities and the loss of stability results a
Hopf bifurcation and produces a kind of periodic oscillation in the loca-
tion of the internal layers which are called breathers [3, 4, 11, 17, 18, 21].
The occurrences of a Hopf bifurcation for the free boundary problem as
a parameter varies were investigated in [7, 8, 9).

We now consider three-component reaction-diffusion system that de-
scribe the interaction of two inhibitors v and w and one activator v in
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[23, 25]:
gour = e2ugs + f(u,v, < w >),
(1) Uy = gz + g(u, v, < w >),
L
O=/ h(u,v, < w >)dz, € (0,L),t>0
0

with the Neumann boundary conditions v,(0,t) = 0 = v,(L,t). Here
€ and o are positive constants and the brackets < > means the spatial
average.

In the system (1) without the integral condition, the stationary so-
lution, being smooth, exhibits an abrupt but continuously differentiable
transition at the location of the limiting discontinuity for sufficiently
small € ([4, 18]). Moreover, for a sufficiently large o, a motionless pulse
is stable and stationary solutions should undergo certain instabilities and
the loss of stability resulting from a Hopf bifurcation produces a kind of
periodic oscillation in the location of the internal layers in [3, 4, 17, 18].
The authors in [25] showed that there are two types of Hopf destabiliza-
tions for the system (1): breathing and swinging and the global coupling
controls which type occurs. The oscillation for a double front pattern
refers to a breathing mode and this breathing mode switch to swinging
mode when the coupling strength increases was shown in [23].

The global coupling via the integral condition in (1) describes a global
restriction of the resources, for example a load resistor in an electrical
setup [2, 20]. In the case of the two layer model, there is a phenomeno-
logical description of an electrical system by a reaction-diffusion system
1, 2, 20, 22].

In this paper, the kinetics are taken the piecewise linear case of
FitzHugh-Nagumo type [6, 16] which are

(2) f=—u+Hu—-ag)—v, g=pu—v—<w>, h=kK — KoV —w,

where #2 is a global coupling constant and u,ag and &, are all positive
constants. A spatial average of w is defined by < w >= % fOL wdz. We
assume that there is a single interface s when € tends to 0. We assume
that the velocity of the interface @ is a continuously differentiable
function defined on an interval I := (—agp,1 — ag) and thus using the

method, [4, 17] the velocity of the interface can be normalized by
2r+2ap — 1

Clr) = \/(r—{—ao)(l —ag — 7").
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By letting € = 0 in (1), then < v > satisfies that
<v>)=pu<u>—<v>—-<w>
=—(p+1-ry)<v>4u(l-1)—r1.

Hence, the single interface problem with the global coupling is obtained
by
@)
Ut = Ugg — (0 + 1)v + pH(x — 3) + K2g — K1,

(z € (0,L)\ {s},t>0)
$5t) = LC(u(s(0),0),(0)), (8> 0)
¢t)=—-(p+1-r2)g+p(l—1%) -k, (t>0)
|v(,0) = vo(z), s(0) =50, ¢(0) = qo,

where ¢ =< v >.

We shall investigate an occurrence of a Hopf bifurcation and the
stability of solutions of the free boundary problem (3) when the global
coupling constant ko varies in this paper. The regular setting of (3) is
adapted from [9] in the next section. In section 3, the existence of steady
states is shown for a global coupling constant. To examine the effects
on global coupling, an occurrence of a Hopf bifurcation for the weak and
strong global couplings is investigated in section 4.

2. Regularized equation of motion

Let A be an operator defined by Av = —vz + (u+ 1)v together with
Neumann boundary conditions v;(0) = v;(L) = 0 in system (3). For the
purposes of the results in this section, A can also be any other invertible
second order operator. For the application of semigroup theory to (3),
we choose a space X := Lo((0, L)) with norm || - ||2.

DEFINITION 2.1. We call (v, s,q) a solution of (3), if it satisfies the
following natural properties: There exists T > 0 such that v(z,t) is
defined for (z,t) € [0,L] x [0,T), s(t) € (0,L) and v(s(t),t) € I for
te0,7),

() v(-,t) € CX([0, L]) for t > 0 with v;(0,t) = v,(L,t) =0,

(ii) s,q € C°([0,T)) N C1((0,T)) with s(0) = so € (0,L) and ¢(0) =
qo € R’

(iii) (Av)(z,t) and v¢(z,t) exist for z € (0,L) \ {s(t)} and t € (0,T),

(iv) t— v(-,t) € C([0,7), X) with v(-,0) = vg € X and
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(v) v, s and q solve the differential equation for ¢t € (0,T) and z €
(0, L) \ {s(t)}-

As a first step we obtain more regularity for the solution by semigroup
methods, considering A as a densely defined operator

{ A:D(A) Caense X — X
D(A) := {v e H>2((0,1)) : v;(0) = v,(L) = 0}.

For fixed s satisfying Definition 2.1, the map ¢t — H(- — s(t)) is locally
Holder-continuous into X on (0,7, so by standard results for parabolic
problems [10] we obtain from the first equation in (3) that the following
regularity holds for v:

THEOREM 2.2. If (v, s,q) is a solution of (3) then v(-,t) € D(A) and
the map t +— v(-,t) is in C°([0,T), X) N C*((0,T), X).

We decompose v in (3), into a part u, which is a solution to a more
regular problem, and a part g, which is worse, but explicitly known in
terms of the Green’s function of the operator A.

THEOREM 2.3. Let G : [0,L]> — C be a Green’s function of the
operator A. Define g : [0, L] x [0,L] x C — C by

9(x,5,q) := A" (uH(z — ) + Kaq — K1)
andy:[0,L] xC — C by
v(s,9) =g(s,s,9) .
Then ¢(-,s,q) € D(A) x C for all s, g, %(x,s,q) = —pG(z,s) is in
HY((0, L) x (0, L)) and v € C=(]0, L)) x C.

Proof. Everything follows from the fact that G is in H“* and C®
on either {z <y} or {x >y}, and that H(- — s) € L2 O

Using these preliminary observations, we decompose a solution (v, s,
q) of (3) into two parts by defining

u(t)(z) := v(z,t) — g(=, s(t), ¢(t)) -

The initial value problem for (u, s,¢) can then be written as

(4) %(U,S,q) + Z(u,s’q) = f(u,s,q)

(u,5,4)(0) = (u(0), 5(0),4(0)) = (uo, 50, 90)
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of a differential equation in a Banach space X of the form X := X xRxC.
The operator A, represented in matrix form

A —_prr _ ra(ptl-kg)
_ L(p+1) pt1
A=1] 0 0 0

0 % p+1—kKo

The nonlinear forcing term f defined on the set
W = {(u,s,q) € CY[0,L]) x R x C : u(s) +v(s,q) € I}
Copen CH([0, L)) xR x C
is as follows :

L fo(u,5,q) - fi(s) — F2le=m)

flu,s,q9) = 1 fa(u,s,q) )
H— K
where
fi:(0,L) - X, fi(s)(z) :=puG(z,s)
and

fo: W —=C, fa(u,s,q):= C(u(s) + ’y(s,q),s,q),
C(u(s) +7(s,9),5,9)
2(u(s) +v(s,q)) +2a0 — 1
V(@0 +u(s) +7(5,0)) (1 - a0 - u(s) — 7(s,0))
We have the following lemma whose the proof refers to [9].

LeEMMA 2.4. The functions fi : (0,L) — X, fo : W — C and f :
W — X are continuously differentiable with derivatives given by

oG
f{(S) = HE(WSL

DfZ(ua S, Q)(ﬂ, §, (j)

= €' (u(s) +2(50) - (w(e)s + GLls.)3 + L) +65) )

Df(u,s,q)(4,3,q)
= %fZ(u7 8, Q) : (f{(S),0,0) -5+ % Df?(uasaq)(ﬁ7§7(i) : (f1(8)7 170)
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We can now apply semigroup theory to (4) using domains of fractional
powers of A and A:

X% :=D(A%), X*:=D(A%) =X*xRxC,ac0,1].

In order for f : W N X® — X to be continuously differentiable, we take
a > 3/4 so that X® c C([0, L]). Standard applications of theorems for
existence, uniqueness and dependence on initial data [10] together with
the starting regularity of solutions to (3) (Theorem 2.2), as well as the
regularity of the functions g and v (Theorem 2.3) then give the following
result:

THEOREM 2.5. (i) For any «, 3/4 < a < 1, (ug, S0,90) € W N X
and o € R there exists a unique solution

('LL, 8, q) (t) = (u’ S, Q)(t; Uo; S0, 40, U)
of (4). The solution operator
(UOa S0, 40, U) = (u) S, Q)(tv up, S0, 90, 0)

is continuously differentiable from X® x R into X* for t > 0. The
functions v(z, t),

v(@,1) = u(t)(z) + g(z, s(t), q(2)),

s and q then satisfy (3) with v(-,0) € X* and v(sg,0) € I.

(i) If (v, s, q) is a solution of (3) for some yu € R with initial condition
vo € X% 1> a>3/4, 80 € (0, L), vo(so) € I, then (ug, sg, qo) :=
(UO - g(a 50, qO), 80, QO) € X*NW and

(v('?t)’s(t)aQ(t)) = (u,s,q)(t;uo,so,qg,u) + (g('7s(t)vq(t))70’0) P

where (u, s, q)(t; uo, S0, Qo, 44) iS the unique solution of (4).
(iii) For any 1 > a > 3/4, p € R, (vo,50,9) € U := {(v,5,9) €
X*x(0,L) x C : v(s) € I'} problem (3) has a unique solution

(v(z, ), 5(t),q(t)) = (v, 5,9)(, %; vo, S0, 90, 7) -
Additionally, the mapping
(vo, S0, 90,0) — (v, 8, 9) (", t; vo, 80, 90, )
is continuously differentiable from X x R into X°.

The proof refers to [9].
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3. Steady states and Linearized equation of motion

The stationary problem of (4) is given by

(Au* = £G(,s) O(u*(s") +7(s",07))

— 2 (= (p+1—k2)g" +p(l — T) — K1),

(5) Q0= oW (s)+a(sa),

0=—(p+1-ko)g" +u(l-%)— k1,

ku*/(o) = 0 = u*l(L)’

for (u*,s*,¢*) € W N (D(A) x R x C). We thus obtain the following
theorem.

THEOREM 3.1. (1) Case without global coupling (kg = 0). Assume
that % —ag < %;L—Kll For all ¢ > 0, the problem of (4) has the

; * % : *_”(1—%)——’{’1 *
solution (0, s*,¢*) with ¢* = =—L7—— and " € (0, L).
(2) Case with global coupling (x2 > 0).
(a) Suppose kg = p+1. Then for all 0 > 0 the statwnary prob]em
of (4) has the solution (0,s",q*) with ¢* =  — ap + = e i
cosh Ly/pF1(1—ZL) sinh(L/pFI=L
\/’—(‘;:(1) sin”h()L\/;T(ﬁ;/H—— 5) and s* = L(1 — il_)

(b) Suppose that k2 < p+ 1 and 3 —ag < ﬁ-’ﬁn—ln For all 0 > 0,

the prob]em of (4) has the stationary solution (0, s*,¢*) with

1_ —_—
g = u{ u+L1 2 and s* € (0, L)
(c) For p+1 < Ky < 00, assume that 5 —ag < weo—7- Then there
p\1- *) — K1
ptl—xo

exists the solution (0, s*, ¢*) such that ¢* = and

s* € (8¢, L — s¢), where

S¢ = 3c(’£2) = L (K + v )

2 2\/
ko sinh(Ly/p +1

- L\/m(@—u—l)‘

(3) Case with strong global coupling (kg T 00). Suppose that

2_0’0<W(Kooln(Koo+\/Kgo_l)—\/f{go—1),

where Ko = SWBIVEFD  Then for all ¢ > 0, the problem of
Lyp+t

(4) has the stationary solution (0,s*,q*) with ¢* = 0 and s* €
(Soo;s L — Sco), Where soo = limy, o0 Sc(K2).
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For all cases, the linearization of f at (0, s*,q*) is
Df(0,s%,4%)(@,3,9)
g(a(s*) + v5(5%,4%)8 + v,4(s", q*)d) pG(-,s™)
= g(a(s*) +’Ys(3*7q*)§+7q(5*aq*)(j)
0

The pair (0,s*,¢*) corresponds to a unique steady state (v*,s*,q*) of
(3) for o # 0 with v*(z) = g(z, s*,q*) .

Proof. System (5) is equivalent to the pair of equations

w'=0, C(v(s*,¢*)) =0 and (u+1—ko)g* =p(l—%)—k
which implies that

v(s*,q*) —(t—ap)=0 and (u+1-ky)g" =p(l—5)—r.

Let £(s) := [y nG(s,y) H(y — s)dy. Then (s, q) = £(s) + 2L We
define a functlon
K24 — K1
(6) F(s) =&(s) + 1 (3 — ao)
satisfying

(H+1—ka)g=p(l—f)— K1,
(1) For k3 = 0, ¢* is easily obtained. Since F'(s) < 0 and F(L) <
0, there exists a unique s* in (0, L) provided that F(0) > 0 which is
equivalent to § — ag < ”—__:1—
(2) (a) If kg = p+ 1, then s* = L(l — “4) and ¢* is a solution
of F(L(1 - %)) = 0,; ¢ = —¢(L(1 - )) + -EL #_)_1 + % — ag, where
cosh(Ly/p+1(1- Tul)) smh(L\/F—l)

f(L(l - %)) = (u+ 1) sinh(Lv/p+1) :
(b) Suppose k2 < p+ 1. We have F'(s) = ¢(s) — ;’%m <
0 and F(L) = — 77 — (3 —ap) < 0. Hence in order to exist a
solution s* € (0,L), we need a condition F(0) > 0, where F(0) =
1 —K1)K 1 —_ —K 1
s+ s (U - m) = (- a0) = 35 — (3~ o0)

(c) Suppose p+1 < ko. We shall find the critical points and the local
maximum of F(s) in (0, L). The derivative of F(s) is given by

/ H
= — ]_ —_
F) == =FamnmyreD b Ve 1T —29)
HK2

T LA N —p—1)
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The critical point s, is given by

L 1
Sc ZZSC(KQ):E‘—'WIH(K— \/Kz—-l)

ko sinh(L\/p + 1)

LyVp+T1(ky—p—1)

We note that F'(s) = F/(L — s) and F'(s) > 0 for s, < s < L — s, and
F'(s) <0for s < scor L—s. < s. Since F(0) = ;%—(I/Z—ao) <0
and F'(s) < 0for 0 < s < s, we have F(s.) < 0. And since F’(s) > 0 for
8 € (8¢, L — 8c), we have F(L — s.) > F(L). If we assume that F'(L) > 0
then F(L — s.) > 0 and thus there is the only point s* € (s¢, L — s¢).

(3) Assume k3 is sufficiently large. In the equation (6),

p(l—3) =K1

with
K=

Ke=p+1-—

we have ¢* = 0. We now show the existence of s*. For large k2, the
equation (6) implies that
p

since limy, o0 k29 = p(F — 1) + k1. Let Fio(s) := &(s) — L—(u#+_1)(L -
s) — (3 — ao) and then Fu(0) = Foo(L/2) = Fo(L) = ap — 3 F,(0) =
F! (L) <0 and F.,(L/2) > 0. Thus our claim is that there is a point s
in (L/2, L) such that Fiu(s) > 0. To do this we shall find a critical point
Soo € (0,L/2) of F'(s5) = 0 and find the conditions of p and L to satisfy
F(L — 55) > 0. The critical point sy satisfy that cosh(yv/1 + 1 (2560 —

 sioh(LvaFT) :
L)) = S—L\/_Flif—’ that is,

(L—8)— (b —ag) =0

L

1
S
S0 = S T o /gl

where limy, 00 K 1= Koo = % "fl"'l) The formula for Df(0, s*,¢*)
follows from Lemma 2.4 in [9] and the relation C'(y(s*,¢*)) = 4. The
corresponding steady state (v*,s*,¢*) for (3) is obtained using Theo-

rem 2.5 in [9)]. O

(Koo — VKZ — 1),

4. Effects of global coupling and the Hopf bifurcation

We shall deal with the linearized eigenvalue problem for (4) which
can be obtained at the stationary solutions. The linearized eigenvalue
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problem is
—A(u,s,q) + 7Df 0, s, ¢*)(u, 5, 9) = A(u, s,q)

which is equivalent to

(A+ Nu = 7(u(s*) + 7s(s*,¢%) s + 1(s*, ¢*) q) pG(z, s*)
+u+1 ((b+1-k)g+ £s),

As=1(u(s*) +7s(s ,q*)s+7q(8*,q*)q),
Ag=—(p+1-k2)g— %

(7)

where 7 = %. Then we show that there is a Hopf bifurcation from the

curve 7 — (0,s* ¢*) of steady states as a global coupling constant xs
varies, and therefore introduce the following definition:

DEFINITION 4.1. Under the assumptions of Theorem 3.1, define (for
1>a> 3/4) the operator B := Df(0,s*,¢*) € L(X*, X). We then
define (0,s*,¢*,7*) to be a Hopf point for (4) if and only if there exists
an ep > 0 and a Cl-curve

(—eo + 7%, 7% + €0) — (A7), (1)) € C x X¢

(Yc denotes the complexification of the real space Y') of eigendata for
—A + 7B with
(i) (=A+7B)(¢(7)) = M1)é(7), (—A+7B)(#(7)) = A(T) ¢(7);
(i) A(7*) =40 with 8 > 0;
(iii) Re (\) # 0 for all A € o(—A +7*B) \ {£ig};
(iv) Re N (7*) # 0 (transversality).

4.1. A Hopf bifurcation without global coupling(xs = 0)

We state our main theorem:

THEOREM 4.2. Suppose that 5 —ap < E=5. The problem (4), re-
spectively (3), has stationary so]ut1ons (u*, s ,q *) where u* = 0 and
1—

—(———;f'_,_)l—— respectively (v*,s*,¢*) for all T > 0. Then there
exists a unique T* such that the linearization —A+ 7B has a purely
imaginary pair of eigenvalues 3 > 0. The point (0,s*,q*,7*) is then a
Hopf point for (4) and there exists a C%-curve of nontrivial periodic or-
bits for (4), respectively (3), bifurcating from (0, s*, ¢*, 7*), respectively
(’U*7 S*? q*’ T*)'
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4.2. A Hopf bifurcation with global coupling (x2 > 0)

THEOREM 4.3. Suppose that (i) k2 = p + 1 then the problem (4),
respectively (3), has a unique stationary solution (u*,s*,q*) where u* =
1 cosh Ly/pF1(1—=L) sinh(Ly/pF15L) .
0,¢"=3—ao+ 34— O EhCaT o and st =L(1-%)
respectively (v*,s*,q*) for all 7 > 0. (i) If 0 < kg < p+ 1 and 3 ~

ag < ﬁi_l—flm, the problem (4), respectively (3), has stationary solutions

o
(u*, s*,¢*) where u* =0 and ¢* = i(l—;l;_zl‘_éz—ﬂ respectively (v*, s*, ¢*)
for all T > 0. Then there exists a unique T* such that the linearization
—A + 7*B has a purely imaginary pair of eigenvalues 3 > 0. The point
(0,s*,¢*,7*) is then a Hopf point for (4) and there exists a C%-curve
of nontrivial periodic orbits for (4), respectively (3), bifurcating from

(0, s*,q*,7*), respectively (v*, s*, q*,7*).

In order to prove the Theorems 4.2 and 4.3, we shall show the next
two lemmas. The following lemma shows that there is a unique, purely
imaginary eigenvalue A = i3 of (7) such that for some 7* (0, s*, ¢*, 7*)
is a Hopf point.

LEMMA 4.4. Assume that ko = p+ 1 or -21- —ag < —L“+If}€2 with
0 < k2 < p+1. Suppose that for 7* € R\{0}, the operator —A+7*B has
a unique pair {43} of purely imaginary eigenvalues. Then (0, s*, ¢*,7*)
is a Hopf point for (4).

Proof. We assume without loss of generality that 8 > 0, and ¢* is the
(normalized) eigenfunction of —A + 7* B with eigenvalue 3. We need
to show that (¢”, i) can be extended to a Cl-curve 7 +— (¢(1), \(1)) of
eigendata for —A + 7B with Re(\ (7*)) # 0.

For this let (10,50,9) € D(A) x R x C. First, we see that sy #
0 and gg # 0. If sp = O then go = 0 from (7) and thus we have
(A+iB)o = pif (so G(z,s*) + qo G(z,¢* )) = 0, which is not possible
because A is symmetric. So without loss of generality, let s = 1. Then
E(to, 0,48, 7*) = 0 by (7), where

E:DA)cxCxCxR— XegxC,
E(anyA:T) =
(A+Nu—7(u(s*) +75(s%,0%) +74(s*,¢") Q) G(z,5*) — T ((+1-k2)g+ &)
A— T(U(S*) +7s(s8*, 4%) + vq(s”, q*)q)

Mt E+1-r)g+§
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The equation E(u,q, A, 7) = 0 is equivalent to A being an eigenvalue of
—A + 7B with eigenfunction (u,1,q). We shall here apply the implicit
function theorem to E. For that it necessary to check E is of C'-class
and that

(8) D(y.q.0) E(t0, 90,18, 7") € L(D(A)c x C, X¢c x C)

is an isomorphism.
It is easy to see that E is C! and in addition, the mapping

Diu,q,3)E(%0, 0,38, 7*)(2, 6, })
(A+3B)+ Ao — 7 (ls*) + Yg(s™,a%) §) nG(w, 8*) — [ (p+1 - K2)g

= X7 (@(s*) +7q(s%,9%) 4)
Xqo+iBG+ (n+1—r2)d

is a compact perturbation of the mapping
(@4, — ((4+iB)a, 4, 4)

which is invertible. Thus D, 4 ) E (%0, g0, 3, 7*) is a Fredholm operator
of index 0. Therefore in order to verify (8), it suffices to show that the
system

D(ua%)\)E(,l/)Oa QO,iﬁ,T*)('ll, qA, X) =
which are
(A+7,ﬁ)'[l+;\¢0 — *( ( *)+’Yq( *,q*)qA)MG(.,S*)
+ h ([L—l—]_ —K)Q)
A= 1" (s )+7q(s*, )4)
)\QO—H,,Bq_ —(p+1—k2)d

necessarily implies that & = 0, ¢ = 0 and A = 0. We define o(z) ==
Yo(z) — uG(z, s*) + 2-qo. Then the first equation of (9) is given by

9)

p+l
(10) (A+if)Yu+ Ao = —iﬂﬁ(}.
Since (u, s,q,\) = (Yo, 1, go, i8) solves (7), ¢ is a solution to the equation
(11) (A + Zﬂ)ds = —/.L&s* + K240
and
(12)

iB = 7 ($(6") + HG(S", ) +20(5",4) + (5" Mo — 22 )

iBgo =— (u+1— K2)go — p/L.
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Multiply (11) by ¢ and integrate. Then we have
[ 143202 4 iglop
= — pug(s*) + K2qo /5

Zﬁ * % * * _x K
=M(;:+MG(5 187) +7s(™,¢7) +7e(s%, g )QO*,—;fTQO) + 2 |go|*L

since [ ¢ = —ptradol _ o0 T by (12). This implies that

p+1+:8
2_ K
(13) [ =£.
Now multiply (11) by @ and integrate then we have
(14) Jasigpi=—uis) + maa [ dz)ds
Since |
. . S VY- B2 JE A WA 2 g K2 o
Juarimpa= [ (~3o-is 2 a)s= -5 [ ¢ -ip - dal
and

~ 1 g Ko A u+1—ry
dz = —————(JqoL + Lg)=E"""14
/U(m)w LriTig Ve M+lzﬂ q) i1 Ld

equation (14) implies that

: . K2 By pk2 . gt 1—kRg .
X[ ¢? - L=—-2) L.
/¢ zﬁu+1qqo - +u+1q+ 1 el
Using fact (13), we have
5 ) +1—k .
A 2 _ 42y _Hk2 i8 LA+,U L
/(|¢>| ¢ M+1Q+M+1KJ2QO g i1 ol
_ K2g _ .
—#+1(u+qoL(u+1 n2+2ﬂ))
which implies
5 [(o - 6% =0

since p+qo L(n+1— k2 +¢8) = 0 by (12). Hence we obtain that A=0
and thus § = 0,4 =0 for 0 < k3 < 0.
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We now show the transversality condition (%) in the Definition 4.1
holds. By the implicit differentiation of E(vo(7),q(7), A(7),7) =0,

Dy g 0 E o, 0, 7%) (W ("), ¢ (1), N (7))
(¥o(s*) + s + Y4 20) nG(w, 5*)
= Yo(s*) + v + Y %
0

This means that the functions 4 := ¥}4(7*), § := ¢/(*) and A := X (%)
satisfy the equations
(15)

(4 +iB)i+ Mo — 7 ((s") +78) O (@, 5°) — Z2¢(u+1 - R2)i

i = (%o(s™) +7s + 74 90)uG(z, 5%),

A= 7Hu(s") + 7% §) = Yo(s™) + s + ¥ %0

Ago+ifd=—(u+1~ Ka)q.

The equations (11) and (15) imply that

(16) (A+iB) i+ Ao =—2r4i04,
A .
(17) T A

where ¢ := Yo —uG(-, s*)+ f_ﬁqo. Multiplying ¢ by (16) and integrating,

we obtain
Jarinas e [1g8=-"2ipq [

which implies that

(18) —uﬁ(s*)+m2%/ﬁ+2iﬁfﬁ$+5\/|¢|2=— jliﬂquoL.

Multiplying @ by the complex conjugate of (16) and integrating, we

obtain
A1/2~2_~/~2 T/—~: K2 . =/~
/| w*—if | lal*+Xx [ o u+lz,6q m
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Compare this equation with (18), then we have

(19)
= ’L,B K/Zd ~_— K9 2= /~ K2
u)‘((r*)2+u+1)+(ﬁ2)\qo 2u+1ﬁq) u+u+1
= 2 / |AY2q)? 4 282 / ||

Since f i = E‘il—“— g L, the second and third terms of the left hand side
of (19) is

(HQS\_QO_ 22 52 )/u+

i B LA qo

ZﬁLq )\QO

_ kel (o _ : _og2|p2 BT 1k

= +1(¢1(N+1 ﬁ2+zﬂ))\qO 26%|q| P )

__ “2L 2 g2 2&_
ll((u+1 ko) + B2+ 28 1 )

which has a real value. Therefore, the imaginary part of (19) is given by

ke L ~12 1/2,-12
A —_ — A
,3(7_*)2 1 (1 +1— ko) 4| 25/ |AY “q
and thus, the real part of Ais
@ 7 2k L 2 / 1/2712
1-— 2] |A
A Red = 2 1 m)lal +2 [ 14

Hence the transversality condition Re)'(7*) > 0 holds for 0 < k2
@+ 1.

OIA

There is a unique 7* > 0 such that (0, s*,¢*,7*) is a Hopf point, thus
T* is the origin of a branch of nontrivial periodic orbits in the following
lemma.

LEMMA 4.5. (i) Suppose that k; = 0. There exists a unique,
purely imaginary eigenvalue A = i3 of (7) with 3 > 0 for a unique
critical point 7* > 0 in order for (0, s*,q*,7*) to be a Hopf point.

(ii) Suppose that ke < p+ 1 and 1 —ap < —% There exists a
unique, purely imaginary eigenvalue \ = i3 of (7) satisfying 8 < (.
for a unique critical point 7* > 0 in order for (0, s*,q*,7*) to be a
Hopf point, where

B2 =(u+D(u+1—k2)+V(p+D(p+1-r)2k+1)—r)
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Proof. Suppose that % —ap < ﬁiI—Hz (k2 < p+1). We need to
show that the function (u,q,S,7) — E(u,q,i03,7) has a unique zero
with 8 > 0 and 7 > 0. This me ans solving system (7) with A = i3 and
v(z) == u(z) — pG(z,s") + ;21q0 which is

(A+iByv = —#53* + K2 qo

(20) i8 =1 (v(s") + HG(s",5) + (57, 0))
iBgo =—(p+1-r2)g —p/L
Thus, we have
i_lj = —uGpg(s™, s*) + pG(s*, s*) + £'(s*) + 13725

= —pGp(s™,s") + pG(s", ") + £'(s") — 1 (u+1+z,@)(u+l r2+ip)’

where G is a Green’s function of the differential operator A +-i3. The
real and imaginary part of the above equation are given by

= = —uImGp(s”,s") + prrmrrait ey (2 +1) — x2)

* % * ok * w2 ((w+1)(p+l-r )_62
0 = "/,LR,eGﬂ(S 7'5 )+“G(3 ,S )+€/(3 )— L(él'“:]()g_l_ﬁZ)l(L(”_{_l_2H2)2+)ﬁ2)~

l_ _ —Ki . . . .
If 5 —ap < —L“ o there is an unique 7 from the first equation since

ImGp(s*,s*) < 0 from [9]. We now define

(21) T(B) = —uReGgs(s*, s*)+ pG(s*, s*)+&(s*)

i (p41) (ut1—ro)—B2
L (p+1)2+82) (e +1—k2)2+6%) "

= K2
Then T(00) = pG(s*,s*)+£&'(s*) > 0and T(0) = &'(s*) L(uH)(Zﬁ-l-nz)
< 0. The derivative of T with respect to (3 is

T'(8) = (~nReGy(s",s")) — T2 £(8),

where
t(ﬂ)z (N+1)(“+1-”<’2)_ﬁ2
(L+1)2+ 81 (b +1—kK2)2+8%)
Welet a = (u+1) and b = (u+ 1 — k2). Then
. 2
t(8) = - (a + ﬂ2)2[(3b2 T B2)2
x ((a + B%) (B + B%) + (ab— (?) (a® + b% +26%))

2
— (a2 + 52)2%)2 T 3%)2 (ab(a +b)* - (8° - ab)2).
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If 32 < B2, where B2 = (u41)(u+1-ro)+ /(o + D +1— k) 2+
1) — k2), then we have t/(3) < 0 and thus 7"(8) > 0. There is the only
one critical Hopf point 7 > 0 and 8 < 5.

For the case of without global coupling k2 = 0, there is the only one
critical Hopf point 7 > 0 and 8 > 0 since T'(c0) > 0,7(0) < 0 and
T'(3) > 0 in the equation (21). O

Hence we proved Theorem 4.2 and 4.3 from the above two lemmas.
In equation (21), the pure imaginary eigenvalues may or may not exist
for ko > p+ 1 and hence we shall examine the stability of the solutions
for k2 > p+ 1 in the future.
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