• Title/Summary/Keyword: Thomas algorithm

Search Result 32, Processing Time 0.028 seconds

THOMAS ALGORITHMS FOR SYSTEMS OF FOURTH-ORDER FINITE DIFFERENCE METHODS

  • Bak, Soyoon;Kim, Philsu;Park, Sangbeom
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.891-909
    • /
    • 2022
  • The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.

Concurrency Control for Processing Real-Time Active Transactions (실시간 능동 트랜잭션 처리를 위한 동시성 제어 기법)

  • 홍석희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.356-363
    • /
    • 2002
  • Transactions in real-time active databases have the notion of activeness where transactions are generated by external effects and another transaction. In this paper, we improve the real -time active concurrency control algorithm by applying Thomas' write rule and considering relationship between transactions fired by active rules. We also present the experimental results of our algorithm comparing other real-time active concurrency control algorithms. The experimental results show that our algorithm has superior performance with respect to the raio of transactions satisfying deadline.

A Linear-Time Algorithm to Find the First Overlap in a Binary Word

  • Park, Thomas H.
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.165-168
    • /
    • 2000
  • First, we give a linear-time algorithm to find the first overlap in an arbitrary binary word. Second, we implement the algorithm in the C language and show that the number of comparisons in this algorithm is less than 31n, where n$\geq$3 is the length of the input word.

  • PDF

Development of the Design Algorithm of Prismatic Luminaire with Electrodeless Lamps (무전극 광원의 프리즘조명기구 설계 알고리즘 개발에 관한 연구)

  • Kim, Chul-Han;Choi, An-Sub;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • Development of light sources has been constantly grown after incandescent lamps had been invented by Thomas Edison. Recently, the eletrodeless lamp is introduced as a new light source of a high efficacy and long life. But, despite of such advantages, luminaires of electrodeless lamps are not widely used. It is necessary to develope the design of the luminaire together with light source development. In this paper, design algorithm of the luminaire that is adaptable to electrodeless lamp and use Genetic Algorithm as a optimization method to find luminous intensity distribution required is introduced.

  • PDF

Neural Network Training Using a GMDH Type Algorithm

  • Pandya, Abhijit S.;Gilbar, Thomas;Kim, Kwang-Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • We have developed a Group Method of Data Handling (GMDH) type algorithm for designing multi-layered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equation are tested for each neuron to make sure that only the best equation of two inputs is kept. All possible combinations of two inputs to each layer are also tested. By carefully testing each resulting neuron, we have developed an algorithm to keep only the best neurons at each level. The algorithm's goal is to create as accurate a network as possible while minimizing the size of the network. Software was developed to train and simulate networks using our algorithm. Several applications were modeled using our software, and the result was that our algorithm succeeded in developing small, accurate, multi-layer networks.

Analysis of Undertow Using$\textsc{k}-\varepsilon$ Turbulence Model ($\textsc{k}-\varepsilon$ 난류 모형을 이용한 해향저류의 해석)

  • Hwang, Seung-Yong;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.357-368
    • /
    • 1993
  • With the assumption of the diffusion dominated flow, a numerical model has been developed for undertow and turbulence structure under the breaking wave by using the $textsc{k}$-$\varepsilon$ turbulence model. Undertow is a strong mean current which moves seqwards below the level of wave trough in the surf zone. The turbulence, generated by wave breaking in the roller, spreads and dissipates downwards. The governing equations are composed of the equation of motion with the period-averaged shear stress due to waves; $textsc{k}$- and $\varepsilon$-equations with the turbulence energy Production due to wave breaking. They are discretised by the three-level fully implicit scheme, which can be solved by using Thomas algorithm. The model gives good agreements with measurements except for the station that is closest to the breaking point.

  • PDF

Optimal Tuning of a Fuzzy Controller Using Boxs“Complex”Algorithm

  • Whalen, Thomas;Schott, Brian
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1350-1353
    • /
    • 1993
  • A fuzzy control system typically requires“tuning,”or adjuctment of the parameters defining its linguistic variables. Automating this process amounts to applying a second“metacontrol”layer to drive the controller and plant to desired performance levels. Current methods of automated tuning rely on a single crisp numeric functional to evaluate control system performance. A generalization of Box's complex algorithm allows more realistic tuning based on lexicographic aggregation of multiple ordinal scales of performance, such as effectiveness and efficiency. The method is presented and illustrated using a simple inverted pendulum control system.

  • PDF

SINGULAR PERTURBATIONS AND SMALL DELAYS THROUGH LIOUVILLE'S GREEN TRANSFORMATION

  • DANY JOY;DINESH KUMAR S
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1211-1225
    • /
    • 2024
  • In this paper, we introduce a numerical method for solving singularly perturbed delay differential equation using Liouville - Green transformation. As an initial step, we transformed the statement equation into a singular perturbation problem with boundary conditions and then we used Liouville - Green transformation to solve it. Almost second-order accuracy is achieved with the scheme derived. The algorithm's performance is assessed through the examination of multiple test scenarios that involve different perturbation settings and delay parameters. The results of the proposed method are compared with those of other numerical techniques already available. The numerical scheme is described together with error estimates and a convergence rate.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography

  • Thomas Weikert;Luca Andre Noordtzij;Jens Bremerich;Bram Stieltjes;Victor Parmar;Joshy Cyriac;Gregor Sommer;Alexander Walter Sauter
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 2020
  • Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.