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Abstract

We have developed a Group Method of Data Handling (GMDH) type algorithm for designing multi-layered neural networks. The algorithm
is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of

two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equation are tested for

each neuron to make sure that only the best equation of two inputs is kept. All possible combinations of two inputs to each layer are also

tested. By carefully testing each resulting neuron, we have developed an algorithm to keep only the best neurons at each level. The

algorithm’s goal is to create as accurate a network as possible while minimizing the size of the network. Software was developed to train and

simulate networks using our algorithm. Several applications were modeled using our software, and the result was that our algorithm

succeeded in developing small, accurate, multi-layer networks.
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1. Introduction

Design of intelligent systems that can learn from the
environment and adapt to the change in the environment has
been pursued by many researchers in this age of information
technology. Neural networks, which are the circuitry for human
intelligence, have been one of the prime candidates in this
regard. An artificial Neural Network is a system consisting of
small processing units (called neurons) that perform specific
tasks in parallel. We have developed an algorithm that will
design multi-layered neural networks to simulate a desired
system with any number of inputs and any sized training set.
Our algorithm uses concepts from Group Method of Data
Handling (GMDH). Nodes in the hidden layers are developed
for each layer that represents functions of every possible
combination of two inputs to that layer. Unlike the traditional
approaches for Neural Network design which result in a black
box architecture for the intelligent system, our approach
provides an optimal architecture for the network and provides
an intelligent system that clearly spells out the functional
relationships between inputs and outputs.

The researchers have developed an algorithm that will
design multi-layered neural networks to simulate a desired
system with any number of inputs and any sized training set.
Our algorithm uses concepts from Group Method of Data
Handling (GMDH). Nodes in the hidden layers are developed
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for each layer that represents functions of every possible
combination of two inputs to that layer. Each node will consist
of a function of up to six possible terms: A constant, the inp{lts
(for linear input/output relationships), the square of the inputs
(to allow for nonlinear (parabolic) input/output relationships),
and the product of the two inputs The combination of these
terms that gives the lowest Mean Squared Error is kept as the
transfer function of the neuron.

The algorithm develops neurons for all possible
combinations of two inputs to the layer. It then continues to
choose only those neurons that supply the best possible MSE.
The surviving neurons are then passed on to a new layer of the
network. This continues until added layers no longer improve
the MSE, the network has reached a designer defined layer
limit, or there is only a single surviving node in a hidden layer.
We demonstrate the ability of our approach by applying it to
various real systems such as medical image recognition, system

identification etc.

2. NEURAL NETWORKS

An artificial Neural Network is a system consisting of small
processing units (called neurons) that perform specific tasks in
parallel. The neurons are arranged in layers, with the output of
the neurons in a layer becoming the input to the neurons in the
next. Typically the first layer consists of a neuron for each
input to the system. These neurons simply hold the input values
and pass them on to the next layer. The next layer is called a
hidden layer since the user of the network does not have access



to these neurons. The neurons themselves consists of a set of
inputs from the first (input) layer, an implementation of a
mathematical function of those inputs, then an output that
carries the result of the function to the next layer. This next
layer can potentially be another layer whose neurons are now
functions of the outputs of the previous layer. After the final
hidden layer, a last layer, called the output layer, actually
supplies the predicted output values to the user. Some neural
networks are capable of designing themselves. These networks
are generally called self-organizing, and the process of setting
up a network to perform a specific task is called training [1].

The mathematical functions in the hidden neurons are where
the training actually occurs in the networks. Each input must be
tested to see its effects on the output of the system. A
comparison between the input and output results in a weight or
coefficient that is associated with that input value.

One of the most common training methods is called back-
propagation. In this method, an initial set of weights is assigned
to each input. Then each input set from the training data is
supplied to the network. The corresponding output is tested and
compared to the expected output. A function of the error is
used to update the coefficients. After testing all of the input sets
from the training data, the network retests all of the data. This
continues until the network determines that the coefficients are
supplying the best output possible [1]. This method can
potentially require millions of iterations before the final
transfer functions are chosen. As we will discuss later in this
paper, we have chosen a faster, statistically based method of
finding the transfer function coefficients.

3. GROUP METHOD OF DATA HANDLING

The Group Method of Data Handling (GMDH) algorithm
was first presented by the Ukrainian engineer and cyberneticist
A.C. Ivakhnenko and his colleagues in 1968 [2]. His intent was
to develop a rival method to stochastic approximation.
Originally designed to estimate higher order regression
polynomials, this heuristic self-organization method has been
applied to a large variety of fields including medicine, biology,
manufacturing, environmental and ecological systems,
psychology, economics, etc. The method builds hierarchical
polynomial regression networks to model complex input-output
relationships [3].

The GMDH algorithm generates and tests all input-output
combinations for a system. Each element of the system
implements a function of two inputs. Coefficients of the
elements are usually determined using a regression technique.
A threshold is specified at each level to determine if the outputs
of the elements in a layer are giving acceptable results. If the

result from an element is within the threshold, it is passed on to
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the next layer. Those elements and or variables that are least
useful in predicting the proper output are filtered out. Each
succeeding layer has more complex combinations. Layers are
added until satisfactory results are reached [4]. It’s almost a
“Darwin” model: Only those elements that are strong and give
desired results are allowed to pass on to the next stage. Using
this method, the algorithm chooses the optimal set of input
variables, the degree of nonlinearity in the final model, and the
structure and the degree of interaction terms in the final model
[5]). There are 4 advantages to this method: A small training set
is required, the multiple layer structure of the resulting system
results in a feasible way of implementing high degree
multinomials, the computation burden is reduced, and
inputs/functions of inputs that have little impact on the output
are automatically filtered out.

4. THE GMDH TYPE ALGORITHM

As with most neural networks, the first layer of our networks
would be comprised of a single neuron per input to the system.
These neurons’ sole functions are to pass the input in to the
first hidden layer. The hidden layers would have the actual
transfer functions that will attempt to predict the proper output.

Since there are many different types of relationships between
inputs and the output of a system, the first step to developing a
GMDH based network is to narrow down which type of
relationship the network will explore. GMDH algorithms often
combine linear and non-linear elements in order to better find
the input-output relationship of a system. In our algorithm,
linear and parabolic (input squared) relationships are chosen. In
addition, each neuron will have two inputs. This results in 6
possible terms. The following quadratic polynomial is used as
the output equation for the hidden neurons:

Y=by + byiny+ bains + bsini+ byiny>+ bsinyin, 1)

In this equation, Y is the output of the neuron, b, are the
coefficients of each term, and in, and in, are the two inputs
selected for the neuron. The by coefficient is added as a
constant offset for the function. It can be used to offset noise or
error in the system. Fig. 1 illustrates a sample hidden neuron.
Fig. 2 shows the entire network architecture.

Input,

: : Y=by + biin\+ bainy + bsin;>+

b4ii’t22+ b5in1in2

Input,

Fig. 1. Diagram of Basic Neuron

53



International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 1, March 2005

Fig. 2. Network architecture for GMDH type neural
networks

Training the Network

One of the most important aspects of a network is not
necessarily how it calculates it outputs, but rather how it
chooses which neurons and layers are placed in the final
network. The size, speed, and accuracy of network are greatly
impacted by this part of any training algorithm. The following
is our method of calculating the coefficients of the individual
neurons, a description of how the final set of neurons is chosen
for a layer, and how layers are chosen for the final network.

Coefficients : Calculation of the coefficients for the neuron
is probably the most complicated part of the entire design
procedure. The following method is suggested in [6]. The
training set supplied by the user will be used the form matrices.
The algorithm systematically takes sets of two inputs to form
the terms in eq (1). The result is the following matrix equation:

Gy B2 Ty Ba bs bbb [N
D I22 D bas Tas De|bi| |,

i3,l i3.2 ia,z i3,4 i3‘5 is.a bz Z| Y, 2)
M MM MMM b3 M

M M M M M Mpal||m
o B2 B3 Goa Bos dss| bs Y,

In this case, s is the number of samples, i, , represents input
n at sample m, and yy, is the desired output for the input sample
m. In terms of the inputs to the neuron, i;=1, i,;=in,, is=in,,
i4=in12, i5=in22 and i6=in1in2.
The next step is to multiply both sides of the equation by the
transpose of the input matrix.
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Multiplying both sides of eq (3) with the inverse of the 6X6
input matrix will give the six b coefficients. If there is no
inverse to the input matrix, the equation does not converge

(there is not enough information or not enough variety of
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information to properly calculate the values for the given
combination of terms).

The Best Equation for a Neuron: One of the benefits of
only taking two inputs into a neuron is that it increases the
chances of finding a close relationship between an input and
the output. Including all six terms may actually hinder the
neurons ability to find this relationship. Therefore, instead of
automatically accepting the equation with all six terms, the
network software tests all of the possible combinations of the
terms. All possible combinations of each of the terms are
removed and the coefficients are recalculated. The number of
subsets (S) containing E elements that can be made from a set
of N elements can be derived using the following equation:

]

@

Since there are a total of six terms, N=6. Using the equation,
there are six single term equations (E=1). For example, y=b, ,
y= byin;, and y= bjin,. Similarly, there are 13 two-term
equations (E=2), 20 three-term equations (E=3), 20 four-term
equations, and 15 five-term equations (E=4). With the one six-
term equation already discussed, there are 77 possible
equations for each neuron.

New b coefficients are calculated for each of these equations.
To do so, eq (3) can still be used. The difference will be that
the proper rows and columns must be removed from input
matrix, and the proper row from the output matrix. For example,
to recalculate the b coefficients without the in; term, row 2 and
column 2 of the 6x6 input matrix are removed (remember that
1y is the constant term and i, represents in;). Similarly, row 2 of

the output matrix is removed. Therefore, eq (3) can be re-

written as:
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The dots represent where the rows and columns used to be.
Notice that there is no longer any sign of the i, term. Now the
input matrix is a 5x5 and the b and output matrices are reduced
by a single row. From here the procedure is repeated (find the
inverse of the 5x5 matrix and multiply both sides by the inverse
matrix to get the remaining b coefficients). The coefficient for
the removed term, b, in this case, is set to 0.

Similarly, two terms can be retnoved from the equations by
removing two sets of of rows and columns, three terms are
removed by removing three sets of rows and columns, etc. This



continues until every possible combination of terms have been
tested.

The result will be a total of 77 sets of b coefficients. In order
to determine which will give the best, the Mean Squared Error
(MSE) is calculated using the following equation:

MSE:li(yd,i—yr,i)z 6
s

The term y,; represents the desired output for the sample set
i. The other term, y.;, represents the calculated output for
sample i using the inputs supplied for that sample and the
coefficients calculated for the equation combination. The
difference between these outputs is the prediction error of the
peuron. By squaring the result, the error will always be positive
and can easily be summed with the errors generated by the
other sample input combinations.

As each of the 77 neuron equations are created, the
corresponding MSE is found. Rather than storing all 77
equations, the MSE’s are calculated and compared as each
only the best
combination is kept. After all 77 equations are tested, the

potential neuron is created. Therefore,

algorithm creates the new neuron with the combination that
resulted in the lowest MSE. This process is repeated until all
possible combinations of two inputs to the layer have been
tested.

Layers: The first layer of the network consists of a single
node per input to the system. The input is handed to the first
hidden stage without any alterations. After the input layer, the
algorithm begins creating the hidden layers. These layers
consist of neurons as shown in Fig. 1.

Each neuron is a combination of two inputs to the layer.
There are potentially a very large number of combinations of
two inputs possible. Eq (4) applies once again, but with E set to
2. For example, with 5 inputs to a system there is a potential for
10 possible neurons. Realize that these 10 neurons then supply
the inputs to the next layer. Therefore, the next hidden layer
could have up to 45 neurons. If left unchecked, the network
could grow very large very quickly. Therefore, the next step is
to choose which of the neurons will be kept in the layer.

To once again limit space, the algorithm has a numerical
limit of two more neurons than the number of inputs to the
layer. Therefore, the first N=inputs + 2 neurons created will be
temporarily placed in the layer. If more neurons are created,
they are compared to the already saved neurons. Only the N
neurons with the best MSE are kept.

Once the initial N neurons are chosen, the algorithm further
limits the number of neurons in the layer by taking the average
of the MSE of the surviving neurons. Any neuron with an MSE
above this average is discarded. The idea is that forces the
system to keep N neurons could potentially mean that neurons
with very poor MSE’s could potentially become part of the
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final network. Also, if several neurons are giving very low
MSE’s, they may not all be necessary. More neurons can be
kept by softening this rule. For example, it can be changed to
any neuron with an MSE 10% higher than the average MSE
will be discarded. An added benefit of this final test is that the
number of neurons in a layer will typically be less than the
number of neurons in the previous layer, limiting the number of
layers in the final network and therefore keeping the network
from growing to an unreasonable size.

The Final Network: Once the final set of neurons has been
chosen, the algorithm must decide whether or not the layer is
worth keeping. The algorithm allows the user/designer to set a
maximum number of layers. This will be the absolute
maximum. As stated in the previous subsection, the algorithm
itself is designed to make each layer smaller than the layer
before it.

Once a new layer is created, the average MSE of its neurons
is compared to the MSE of the previous layer. If there is no
improvement, the layer is discarded and the algorithm creates a
final layer. If average MSE is better, the layer is added to the
network. If the new layer has only one neuron, the algorithm
creates the final layer. Otherwise, the algorithm proceeds to
create another layer with the output of the latest added layer as
the input to the new layer. The output layer of the network
consists of a single neuron that outputs the average of the
outputs of the neurons from the last hidden layer.

5. APPLICATIONS

Whereas many algorithms today are designed with specific
applications in mind, we have created an algorithm that we feel
is flexible enough to fit into many different applications. In this
section we have listed a few of the applications on which we
have tested our algorithm. We will also discuss medical
applications [7] using sigmoid and radial basis function [8]
GMDH type algorithms.

5.1 XOR paradigm

The most commonly used experiment for testing a neural
network is the XOR function [9], so we will start with that
particular challenge. The simulation found that a single hidden
node with the following equation was enough:

¥ =0+ 0in; +0iny + lint +1in3 — 2(in))(in2) )

Other networking learning algorithms such as back
propagation take thousands of iterations and still have quite
large errors [10]. Wu et al tested two methods, BPNET and
BPNET-CS, with the XOR problem. BPNET is a basic back
propagation algorithm that includes an additional term in
calculating the weights that takes into account previous
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improvements in the output. BPNET-CS is also a back
propagation algorithm, but it uses a more complex error based
calculation to speed up the training process. The BPNET still
has a large error with over 10000 iterations. The BPNET-CS
method has about 2.4% error after 700 iterations. With our
learning algorithm, the equation was quickly found after
calculating and testing the 77 possible combinations of the six
neuron terms. No error is present after the final equation for the
neuron is selected. Fig. 3 shows the architecture based on
GMDH as compared to other previously proposed architectures
for the XOR problem.

Fig. 3. Various Neural Network Architectures for
Implementing an XOR Function
(a) based on multilayer perceptron (b) based on feedforward
architecture (c) based on GMDH

5.2 Product Usage

This experiment is based on a problem in the Draper text [6].
The problem uses relative urbanization, educational level, and
relative income as the independent input variables, and the
usage of a certain product as an output. Draper attempted to
predict the output using Regression analysis. The network

produced by our algorithm had a total of 4 layers and 7 neurons.

The output had approximately 1.47% error with the training
data. The error for the equation developed by Draper was
approximately 1.91% error.

5.3 Predict Aggregate Quality Parameter SPR from the
four identified factors, DEN, Ir, Qz, and spr

The data for this application are originally from Hogstrom
f11] and quoted in Huang. Huang [12] evaluated them with a
single layer back propagation artificial neural network. For this
data, the input values represent density (DEN), point load (Ir),
quartz content (Qz), and brittle mineral content (spr). These
four factors determine the quality parameters known as the
impact value (SPR). Along with the four inputs, 56 training set
samples were supplied.

Since Huang’s[12] purpose was to prove that a single hidden
layer in a back propagation network was enough to supply
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acceptable results, the same restriction was placed on the
network software. The network was limited to a single stage.
The same testing method was used for this analysis as Huang
used. One input combination was taken out of the 56. The other
55 values would be used to train the network, then the input
combination taken out would be used for testing. The error for
each combination corresponds to using that line as the test
combination.

Our algorithm produced only a 5.62% error while the back
propagation method resulted in 5.75%.

5.4 Medical Image recognition

Automatic identification of organs in the medical images and
their volume calculation are important issues in Computer
Aided Diagnosis (CAD). It is possible to extend the
architecture discussed in section 4 to more complex types of
neurons such as sigmoid or radial basis function type neurons.
GMDH-type neural networks with sigmoid functions were
applied for the identification of the liver in CAT (Computer
Aided Tomography) scan images and it is shown that this
algorithm is very useful for medical image recognition. The
GMDH-type neural networks with sigmoid functions have the
abilities of self-selecting useful input variables and of self-
organizing optimum neural network architecture [5]. The
structural parameters such as the number of the layers, the
number of the neurons in the hidden layers, the useful input

Fig. 4. CAT scan image of the Liver

Fig. 5. Liver region extracted using the GMDH algorithm



variables etc. are automatically determined so as to minimize
the error criterion defined as AIC (Akaike’s information
criterion)[13]. Fig. 4 shows the CAT scan of the liver and Fig.
5 shows the extracted liver region using the GMDH algorithm.

The GMDH-type neural networks with radial basis functions
were applied to medical image recognition of the brain. Fig. 6
shows the MRI scan of the brain while Fig. 7 shows the result
of applying GMDH for extracting the brain region.

Fig. 6. MRI scan image of the Brain

Fig. 7. Brain region extracted using the GMDH algorithm

6. CONCLUSIONS

We have proposed and developed a GMDH type training
algorithm that produces the smallest, most accurate neural
network possible. Since our method does not require many
iterations to calculate the weights of each node, it can produce
a network very quickly. We do not contend that our algorithm
will give the best results in all cases, but our results show that it
is more flexible, accurate, and faster than many algorithms
currently available. As shown by various medical applications
the algorithm can be extended to other type of neurons such as
the sigmoid or radial basis function type neurons.
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