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Abstract:

A fuzzy control system typically requires "tuning,” or
adjustment of the parameters defining its linguistic variables.
Automating this process amounts to applying a second "metacon-
trol” layer to drive the controller and plant to desired perform-
ance levels. Current methods of automated tuning rely on a
single crisp numeric functional to evaluate control system per-
formance. A generalization of Box’s complex algorithm allows
more realistic tuning based on lexicographic aggregation of
multiple ordinal scales of performance, such as effectiveness
and effciency. The method is and illustrated using a
simple inverted pendulum control system.

{. Control and Metacontrol

Figure 1 presents the basic idea of a control system. The
controfler compares the output of some physical process (the
“plant”) against an ideal value (the "control objective” or "set
point") and applies a control signal to the plant. The goal is
to drive the plant’s output toward the control objective. In
gencral the plant’s behavior is also subject to an uncontrolled
disturbance. The disturbance may be an initial difference be-
tween the plant output and the control objective, it may consist
of later fluctuations that tend to push the plant’s output away
from the control objective, or both. (More detailed treatments
of control dynamics make a distinction between the internal
state of a plant and its external output. The present discussion
suppresses this distinction without undue loss of generality
since observable states can be mapped into the output vector
while unobservable states can be approximated as disturbances.)

Figure 2 adds another element to the picture.  The "metacon-
trotler” observes the inputs and outputs of the controller,
These inputs and outputs are and compared against
metacontrol objectives; on the basis of this comparison the meta-
controller adjusts the parameters of the controller to bring the
behavior of the system as a whole closer to the metacontrol
objective.

Metacontrol is almost always an important part of the design
and implementation of a control system.  The process begins with
choosing the basic design of the controller; examples include
traditional Proportional Integral Differential (PID) control-
lers, neural nets, and fuzzy logic control systems. In any
case, the controller design will include several parameters
whose values collectively specify a particular member of a
general family of controllers. These parameters define a mathe-
matical space that must be searched to find a satisfactory or
optimal controller for the system in question.

The "metacontroller” in the early stages of implementation
is the members of the design team themselves, aided by general
purpose hardware and softiware. The design team specifies vari-
ous prototype versions of the controller, each of which defines
a point in parameter space. They then test each prototype
against a real or simulated plant. The evaluation criteria for
judging prototype controllers can be conceptualized in terms of
two broad categories. The first category, effectiveness, con-
cems how well the controlled system approximated the control

objective. The second category, efficiency, measures how well
the controfler itself performed in terms of resources consumed
and unwanted side effects produced.

The design team uses information about the effectiveness and
efficiency of the controller prototypes investigated so far to
pick new points in parameter space to be investigated. The
process continues tteratively until the system is good enough to
be released.

The process described above relies very heavily on human
judgment and expertise; we may call it the "manual metacontrol”
paradigm, There are several good reasons to try to automate
parts of the metacontral process.  Orne strong impetus comes from
the area of adaptive control, in which the metacontrolier is
i with the controller. An adaptive system continually
evaluates the effectiveness and efficiency of the control pro-
cess and continually or intermittendy modifies the values of
the control parameters to improve them. Tt has become customary
to refer to this updating of control parameters as "leaming” by
analogy with the way a human operator improves his or her
control of a system with increasing experience.

Ancther reason to automate the metzcontrol process is to be
able to deliver more control systems to the market in less
time.  Advances in hardware and software have opened up many
opportumities to market "smart” devices of all sorts, as soon as
control systems exist to implement them. In this context, auto-
mated metacontrol Systems become an important component of
computer aided design, greatly increasing the productivity of
control engineers.

A final reason for automated metacontrol is documentation.

A controller that arises from a standardized search algorithm
with a well defined stopping criterion may be easier to recog-
nize as "good enough” than one which is simply the best one scen
so far in an undocumented process of trial and error search.

2. Fuzzy Logic Control

Fuzzy controllers have received considerable attention, both
practical and theoretical, because domain experts with no
special training in control engineering can qualitatively frame
fuzzy rules for namowly defined systems. [Sugeno & Yasukawa,
1991] The general structure of such rules can often be acquired
rather directly because of their linguistic flavor; neverthe-
less, tuning or calibrating the fuzzy variables can still be
very challenging.

We consider standard fuzzy controllers which encode their
knowledge as rules comprised of combinations of subrules. A
typical subrule i has the form "If the value of xi is ¢ and
the value of yi is %, then the value of zi should be

Ze." Lower case letters x and y signify the names of antece-
dent variables such as position and velocity; ¢ and %
are fuzzy linguistic values describing these variables. Similar-
ly, z and are a consequent variable and its fuz% value.

The rule contains subrules i=1,...,¢ which are fused
into the overall rule by the fuzzy operator minimum or maximum,
depending on the multivalued logic employed in the system.
(Minimum for material impfication type logics, maximum for
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Mamdani-type logics.) The term set for the fuzzy values
Z and commonly includes: Large negative;
Negative; Small negative; Zero; Small positive;
Positive; and large positive. A typical subrule is "If
the error angle is Small negative and the angular velocity
is Small negative, then the force of the push should be
Small positive.” The current study uses a system that
contains one rule with eleven subrules.

In operation, the fuzzy controller observes the actual
data values for the antecedent variables x and y, denoted
X and In a practical fuzzy control system, the
actual values are observed in the form of crisp numeric
singletons. Also the operational controller defuzzifies
the rule’s detached consequent value Z into a crisp
mllmedc singletort that is the actual control signal to the
plant.

Common performance variables for mabile systems are
safety, fuel economy, smoothness of ride, and speed of
recovery. Performance factors of the controller itself
include speed, robustness, memory needs, physical
dimensions, and cost. We are concerned in this study with
the effect of tunigg decisions upon two performance
factors: the length of time the pole remains balanced
(effectiveness), and the smoothness of the control (effici-
ency). We attempt to optimize system performance in
relation to these criteria, seeking effectiveness first and
then efficiency, The methodology employed does not assume
that the controllable factors and the performance variable
have continuous numeric values.

3. Metacontrol for Fuzzy Logic Controllers
Researchers have proposed tried many approaches to
searching parameter spaces of controllers in general, and

fuzzy logic controllers in particular. Nearly all the
automated apprmchei involve defining a single numeric
objective functional” or "figure of merit” to express
both the effectiveness and the efficiency of the control
process. Given such an objective functional, various
workers have optimized it analytically [Kirk, 1970], using
Regporse Surface Methodology [Schott & Whalen, 1992, using
neural networks [Hayashi et al, 1992; Kosko, 1992; Berenji,
1992; Keller & Tahani, 1992], as well as other approaches.
However, the use of a single numeric objective functional
seems to work drectly contrary to the principal advantages
of fuzzy control systems over their non-fuzzy counterparts.

In a fuzzy control system, the control objectives
themselves may be ordinal; they need not he restricted to
an interval or ratio scale. Fuzzy control objectives can
reflect and exploit the fact that many real situations are
more or less tolerant of imprecision. For example, a fuzzy
controller may strive to maximize a global assessment of
"comfort” in a transportation system while a nonfuzzy
system can only optimize some mathematical function
combining acceleration, vibration, and noise. As a result,
it seems questiomable to tune a fuzzy controller using
optimization procedures that attempt to estimate first and
second derivatives of the degree to which the system meets
its fuzzy control objectives.

Ordinal scales also facilitate lexicographic and other
nonlinear approaches for dealing with multiple objectives.
The use of a single numeric cbjective functional to capture
all aspects of effectiveness and efficiency trade-offs can
be problematic even in nonfuzzy control environments. And
it is doubly questionable to represent the trade-offs
between fuzzy effectiveness and fuzzy efficiency with a
single crisp fuactional.

A classic algorithm, coincidently published in the same
year as Zadeh’s original article on fuzzy sets, provides a
solution to both these problems. The algorithm is due to
M.]. Box [1965; Himmelblan 1972 p.177-178]; it is called
the "complex" algorithm not because it is especially
intricate but because it involves a set of points in
pacameter space consisting of mare than the minimum mumber
of points necessary to span the space. Box called such a

1. The sarm *funcriondl,” ux opposed 10 “funciion,® indicates thas the argument of the ob jective
Sunctional is bself a function of time, which sracks syxiem performance shroughous she ast period.
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set of points a "complex” to distinguish it from a simplex
which contzins only the minimum mumber of points, which is
one more than the number of dimensions.

The great advantage of Box’s complex algorithm for
tuning a fuzzy controller is that it uses only ordinal
evaluations of the quality of points in parameter space. In
fact, the complex algorithm can seek an optimum even when
the quality of the points is incompletely ordered. (The
algorithm also has some faults; when the objective is
single and differentiable, derivative based approaches
require fewer evaluations of the objective function
[Himmelblau, 1972]. Also, the algoritim can fail when the
minimum lies along a sharply curving valley.) In the
present research, we extend the Box algorithm to handle
mulitple ordinal objectives lexicographically.

4. Tuning Using Box's Complex Algorithm
The following discussion a generalization of
Box’s original algorithm as applied to tuning a fuzzy
control systern with some free ters. The approach

generalizes that of Box by explicitly considering the
possibili?r that the quality of points might not be
completely ordered. It is possible that two control
systems may perform equally well within the limits of our
ability to judge them. It is also possible that two
control systems may be clearly different in their perform-
ance, but we are still unwilling or unable to say one is
better and the other worse.  This can happen when one is
clearly more effective, but the other satisfies minimal
effectiveness requirements and is much more efficient.

Step 1:

To begin tuning a fuzzy controller using the complex
algorithm, select an initial complex of points in the
mathematical space defined by the of the control
system to be implemented.  (Box suggests that the number of
points be three times the number of parameters.) Each
point defines a control system; run each control system
with a real or simulated plant for a standard trial
period. Tt is important that the points span the space of
parameters; this can be accomplished either by using a
design matrix as in [Schott & Whalen, 1992] or by random
perturbation from an initial value as suggested by Box.

Step 2:
Ranimepoimsfrombesttoworstwimrespecttome
performance of the corresponding controllers. (Ties and
I are allowed.) For example, an engineer might
rank the performance of control systems for a vehicle in
terms of safety while a human factors expert ranked them in
terms of comfort and an accountant ranked them in terms of
cost. The final ranking might depend on safety, with ties
on safety broken by trading off comfort and cost.

Step 3:

Select the worst point in the current set. If there is
no unique worst point, idnetify the set of points that are
not ranked better than any other point, and randomly select
a poirt from among those. Construct a line in parameter
space from the worst point to the centroid of the other
points. Multiply the distance from the worst point to the
centroid by an "overexpansion factor” (Box suggests 1.3),
and extend the line beyond the centroid by a distance equal
to the result. This defines the new candidate point in
parameter space.

Step 4:

Runpthe corresponding control system with the real or
simulated plant for a standard trial period, and compare
its performance with the worst point in the complex. If
the new point is better than the old worst point, replace
the latter with the new point and return to step 2. If the
new point is worse than the old worst point, if the two
points are tied, or if the two points are not comparable,
then create a new candidate point half way between the old
candidate point and the centroid. Make this the new
candidate point and repeat Step 4.



Contimie these steps until the points in the complex are
all within a ined radius of one another or until
some other criterion is met. If the algorithm seems to be
stk in Step 4, check the of the control system
defined by the centroid of the complex. If the centroid
control sysiem worse than any of the points in the
complex, Box’s algorithm cannot proceed. To get further
improvement in this case, re-start the algorithm with a new
complex in the vicinity of the best points seen so far.

S. Example: Tuning an Inverted Pendulum Controller
Control of an inverted pendulum has become a common
benchmark problem among fuzzy researchers. A cart on a

straight track is pushed with varying degrees of force
according to the controller’s instructions. A sensor detects
the angle O in radians that the pole makes with the
vertical. The angular velocity of the pole angle, ©°, is
approximately based on the change in ©. Another
sensor measures the cart’s position 6 relative to its
starting position. A pushing force T is applied to the
cart. 6, ©°,8, and T can take positive or negative
values depending on leftward or rightward orientation.

The fuzzy controller uses eleven sub-rules containing O
and © as antecedent variables, and with T' as the
variable. Five terms were defined for each variable:
Negatve; Small negative; Zero; Small positive; and
Positive. All fuzzy (linguistic) variables were represented
as symmetrical trapezoids. The scales of all the trapezoids
on each universe of discourse were uniform refative to one
another, but the scales on different universes were
independent.

The cgimller was tuned (metacontrolied) by calibrating
the scale” of the axes of the three universes: ©, ©°, and
T'. Two criteria were used for optimization. The most
i goal of the system, its "effectiveness,” was simply
to balance the pole. The system was run for a simulated
period of 5 seconds, divided into 250 "ticks" of the
simulation clock. If the pole angle © passed out of the
controllable range during this time, the number of ticks
remaining in the test period was reported. If the pole was
still standing at the end of the simulation, this figure was
equal to zero. Effectiveness scores are presented in Tables
1 and 2 in the column headed "time left;" the smaller this
number, the more effective the control.

A second goal, "efficiency,"” was to achieve a smooth,
steady balancing of the pole rather than a jittery or runaway
one. (Cart-pole systems are subject to a "runaway”
condition, in which the pole remains balanced at an angle
while the cart accelerates continuously until it runs off the
end of the track.) The second goal was represented by the
product of two quantities: the integral of the absolute angle

| ©| and the integral of the absolute cart posiion |68 | .
This number is very farge under runaway conditions and
moderately large for an inefficient, jittery control system.
Effectiveness scores are presented in Tables 1 and 2 in the
column headed "instability;" the smaller this number, the
more efficient the control.

The two goals were combined lexicographically. In other
wards, any control system that balanced the pole for a longer
period ranked better than anmy control system that balanced
the pole for a shorter period, regardless of their relative
efficiency ratings. If the control systems both balanced the
pole for the entire experimental period, or if they both
balanced the pole for equal periods of time before losing
control, then the more efficient control system ranked
higher. (The actual scores used were time remaining when
control was lost and a measure of inefficiency, so
optimization was by minimization.)

Following Box’s suggestion, we used nine original sample
points to tune the three ters of the system. The
triads (O, ©’, and T scales) for each of the 9 original
sample poinds in Table 1 were set judgmentally to include a
broad range of reasomable designs. Each point specifies the
scale values of the 3 variables: pole angle scale in  ~

2 Each continuous variable’s axis was discravized at 17 equidistans values. The "scole” value is
the disance berween ad jacens points, with the median (dghth) point aliways anchored at rero

radians, pole angular velocity scale in radians per second,
and pushing force scale in newtons.

The initial nine points consisted of the controller for
which all three scales equalled 2.0 plus the eight control-
lers formed by all combinations of:
angle (0) scale = .03 or 1.0 radians;
angular velocity (©) scale = .02 or 2.0 radians/second,;
and push (I') scale 1.0 or 10 newtons.

The smaller the scale for © and ©°, the more sensitive
the controller is with respect to changes in angular position
and velocity. The larger the scale for I', the stronger the
output of the controller. At each stage of tuning, the 9
pomts are presented in sorted order, so the ninth row is
always the worst of the 9 points currently under

consideration.

Every experiment was run with a starting angle © = 0.05,
angular velocity ©° = 0, and positiond = 0. Time was
incremented every 0.02 seconds, cart mass was 1.0 Kg, pole
mass was 0.1 Kg, pole length was 0.5 m, and acceleration due
to gravity was 9.8 m/s2. The simulation was based on
differential equations provided by Hamid Berenji [Berenji,
1992].  The simulation assumed a frictionless plant and
certain other simplifications, and is not intended to
precisely represent a real inverted . Box’s complex
algorithm was implemented as a Lotus 123 spreadsheet.

Table 1 shows the original set of nine points in
parameter space along with the two criterion variables for
each one. At the bottom of the table the coordinates of the
centroid point and the vector from the worst point to the
centroid appear.  In the box at the top of the table appear
the coordinates of the next candidate point. The box also
contains the locations where the user wilt enter the values
of the criterion variables from the simulation using the
controller defined by the candidate point.

. Table 2 shows the spreadsheet after approximately 65
Iterations. Note that all nine points are much closer
together than in the original spreadsheet. The first of the
nne poirts would define the system to be implemented and
marketed if this were an actual design project.
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Figure 1: Basic Control System

Figure 2: MetaControl System
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Table 1: Initial Spreadsheet Tableau
INPUT TO SIMULATOR OUTPUT FROM SIMULATOR
0.582 0.954 3.606 : Better
newo newe’ newl' newT newl
time insta-
8 a’ r left bility
1 0.03 0.2 1 0 83.2758
2 0.03 0.2 10 0 100.012
3 0.03 2 1 30 569
4 1 0.2 10 154 123000
5 h 0.2 1 213 2570000
6 0.03 2 10 219 723000
7 1 2 1 223 792000
8 2 2 2 223 4600000
9 1 2 10 223 5090000
bade bade’ badr badT badIl
0.64 1.1 4.5 centroid
-0.36 ~-0.9 ~5.5 vector 0.1625 coefficient
Table 2: Final Spreadsheet Tableau
INPUT TO SIMULATOR OUTPUT FROM SIMULATOR
0.028 0.485 6.601 Better
newe newe’ new!l
time insta-
] e’ r left bility
1 0.023 0.347 7.243 0 12.2303
2 0.027 0.435 6.034 0 22.6592
3 0.031 0.62 6.522 0 31.7899
4 0.031 0.515 4.781 0 35.0634
5 0.027 0.444 6.598 0 39.342
6 0.032 0.59 7.159 0 39.9405
7 0.028 0.578 9.925 0 46.3209
8 0.022 0.333 4.546 0 46.7025
9 0.021 0.116 6.561 0 49.9
bade bade’ badr badT badl
0.027 0.485 6.601 centroid
0.007 0.369 0.04 vector 0.0013 coefficient




