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SINGULAR PERTURBATIONS AND SMALL DELAYS

THROUGH LIOUVILLE’S GREEN TRANSFORMATION

DANY JOY, DINESH KUMAR S∗

Abstract. In this paper, we introduce a numerical method for solving sin-
gularly perturbed delay differential equation using Liouville - Green trans-

formation. As an initial step, we transformed the statement equation into

a singular perturbation problem with boundary conditions and then we
used Liouville - Green transformation to solve it. Almost second-order ac-

curacy is achieved with the scheme derived. The algorithm’s performance

is assessed through the examination of multiple test scenarios that involve
different perturbation settings and delay parameters. The results of the

proposed method are compared with those of other numerical techniques

already available. The numerical scheme is described together with error
estimates and a convergence rate.
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1. Introduction

In the scientific literature, singularly perturbed delay differential equations
(SPDDEs) are those that have at least one positive or negative shift parameter
and a highest order derivative that is multiplied by a small positive parameter.
The numerical approaches to the treatment of these equations have attracted
more attention in recent years. The mathematical modelling of the human pupil
light reflex [17], vibrational issues in control theory [7], physiological kinetics [3],
predator–prey model [1] etc are commonly encounters these kinds of problems.
Ecology and epidemiology also play significant roles in the study and appli-
cation of singularly perturbed delay differential equations. These fields often
involve systems with processes occuring at vastly different time scales, which
is where singular perturbation techniques become highly useful. The works
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in [10], [9], [11], [8] can also be extended to give applications in SPDDEs as they
deal with aforementioned disciplines. Fluid mechanics, quantum mechanics, op-
timal control, elasticity, chemical reactor theory, aerodynamics, geophysics, and
many other areas of applied mathematics often deal with the area of singular
perturbation. In a similar way, there has been a rise in interest in delay differen-
tial equations because they are used in so many different fields, such as medicine,
life sciences, robotics, economics, physical sciences, and so on.

Lange and Miura [16] investigated a class of boundary-value problems and
discussed an asymptotic method to approximatively solve this type of differen-
tial equation. In [2], Amiraliyev and Cimen carried out an exponentially fitted
difference scheme on a uniform mesh. This is achieved by the use of the method
of integral identities, which involves the utilisation of exponential basis func-
tions and interpolating quadrature rules that are formulated with the weight
and remainder term in integral form. Phaneendra and Lalu [18] applied Gauss-
ian quadrature two point equation is applied to obtain a tridiagonal system and
is solved with rate of convergence one. In [14], Kanth and Kumar developed a
hybrid numerical technique consists of the tension spline technique in the bound-
ary layer region and the midpoint approximation on piecewise uniform mesh in
the outer region. Chakravarthy and Kumar [21] approached these problems via
Numerov’s method and the authors in [4] developed an initial value technique
to solve these type of problems. In [19], a fitted parameter exponential spline
method to solve SPDDEs of convection diffusion type. The authors in [26] pre-
sented Hermite polynomial approach to solve these equations by converting the
main problem to a matrix equation. In [13] they considered a standard upwind
finite difference scheme on a special type of mesh to tackle the delay argument.
A numerical integration method by introducing an exponential integrating factor
for solving singularly perturbed delay problems is studied by Challa and Reddy
in [24]. Chakravarthy and Rao [5] developed modified Numerov method to solve
the problem with delay and advance term. In [12], the authors cosider the sin-
gularly perturbed system of delay differential equations and a non polynomial
spline technique is used to solve the problem. The authors in [15] proposed
a fourth order finite difference scheme with fitting factors for the solution of
SPDDEs with mixed shifts. In [22] they proposed a cubic spline in compression
technique to solve the problem with integral boundary conditions. Ranjan and
Prasad [20] studied an exponentially fitted three-term finite difference approach
singularly perturbed delay differential equations with small shifts.

In this work, we take into account convection diffusion problems, which fall
under the category of singularly perturbed delay differential equations. In Sect.
2, we define the problem and assumptions on the parameter. In Sect. 3 we
employ Liouville-Green transformation to arrive at its numerical solution. Us-
ing Taylor series, an equivalent equation is developed to approximate the given
problem and the Green transformation is applied to get a recurrence relation,
which is then solved by Thomas Algorithm. The convergence analysis of the
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proposed method is also discussed in Sect. 4. In Sect. 5 different model exam-
ples are computed with varying delay and perturbation parameters, and their
results are shown. Discussion and Conclusion follow in Sect. 6.

2. Statement of the problem

To illustrate the method, we use the following singularly perturbed delay
differential equation of convection diffusion type:

µx′′(z) + c(z)x′(z − η) + d(z)x(z) = g(z), 0 < z < 1, (1)

with interval and boundary conditions,

x(z) = ψ(z),−η ≤ z ≤ 0 and x(1) = γ. (2)

where µ (0 < µ << 1) is perturbation parameter and η (0 < η < 1) is a small
delay parameter. As η < µ , for c(z) ≥ N > 0, (µ− ηc(z)) > 0,∀z ∈ [0, 1], then
the boundary layer exist on the left side and for c(z) ≤ θ < 0, the boundary layer
exist on the right side. We assume d(z) ≤ −θ < 0, where θ is a positive constant,
c(z), d(z), g(z) and ψ(z) are bounded functions having continuous derivatives and
γ is a fixed constant. When the shift parameter η is smaller than µ the use of
Taylor’s series expansion for the term containing shift argument is valid [25]. In
this work, the case when η < µ is considered. Thus, applying the expansion of
Taylor Series in the region around z, we obtain

x(z − η) = x(z)− ηx′(z) +O(η2). (3)

Using (3) in (1), we develop the following problem containing small perturbation
parameter ϵ.

ϵx′′(z) + c(z)x′(z) + d(z)x(z) = g(z), (4)

with,

x(0) = ψ0, x(1) = γ, (5)

where,

ϵ = µ− c(z)η.

3. Liouville - Green Transformation

3.1. Numerical Algorithm.
The subsequent procedure is suggested for acquiring the numerical solution of
the problem:
Step 1: Introduce the uniform mesh by partitioning the domain [0, 1] into N
mesh intervals.
Step 2: We make use of Taylor series expansion of first order derivatives.
Step 3: Liouville - Green Transformation is applied to the statement obtained
in Step 2.
Step 4: We employ the scheme obtained in Step 3 and find the solution of the
problem using Gauss elimination method.
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3.2. The proposed numerical scheme.
Consider the equation,

ϵx′′(z) + c(z)x′(z) + d(z)x(z) = g(z), z ∈ [0, 1]. (6)

The Liouville-Green Transformation [23] is given by,

u = α(z) = 1
ϵ

∫
c(z)dz,

β(z) = α′(z) = 1
ϵ c(z),

(7)

w(u) = β(z).x(z). (8)

Differentiate equation (8) with respect to z, we have,

dx

dz
=

α′(z)

β(z)

dw

du
− β′(z)

β2(z)
w(u), (9)

d2x

dz2
=
α′2(z)

β(z)

d2w

du2
+

[
α′′(z)

β(z)
− 2β′(z)β′(z)

β(z)

]
dw

du
−
[
β′′(z)

β2(z)
− 2

β′2(z)

β3(z)

]
w. (10)

Use the equations (9) and (10) in (6) to get,

d2w

du2
+ P (z)

dw

du
+Q(z)w(u) = R(z), (11)

where,

P (z) = 1− ϵ
c′(z)

c2(z)
,

Q(z) = 2ϵ
c′2(z)

c4(z)
− ϵ2

c′′(z)

c3(z)
− ϵ

c′(z)

c2(z)
+ ϵ2

d(z)

c2(z)
,

R(z) =
g(z)

c(z)
.

Now, we use approximation for w′
i and w

′′
i with the help of Taylor series of wi+1

and wi−1 upto O(h5),

w′
i ≃ wi+1 − wi−1

2h
− h2

6
w

(3)
i + T1, (12)

w′′
i ≃ wi+1 − 2wi + wi−1

h2
− h2

6
w

(4)
i + T2, (13)

where,

T1 = − h4

120
w

(5)
i +O(h5) and T2 = − h4

360
w

(6)
i +O(h5).

Use equations (12) and (13) in (11), we get,

wi+1 − 2wi + wi−1

h2
− h2

6
w

(4)
i + T2
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+ P (z)

(
wi+1 − wi−1

2h
− h2

6
w

(3)
i + T1

)
+Q(z)wi = R(z). (14)

From (11), we have

w′′
i = Ri − Piw

′
i −Qiwi. (15)

We make use of (14) to get w′′′
i and wiv

i .

w′′′
i = R′

i −Q′
iwi − (P ′

i +Qi)w
′
i − Piw

′′
i ,

w
(iv)
i = R′′

i − PiR
′
i + (PiQ

′
i −Q′′

i )wi + (PiP
′
i + PiQi + 2Q′

i − P ′′
i )w

′
i

+(P 2
i − 2P ′

i −Qi)w
′′
i .

Substituting the above equations, we have,[
1

h2
− Pi

2h
− h

12
(2Q′

i + P ′′
i ) +

1

6
(2P ′

i +Qi)

]
wi−1

+

[
− 2

h2
+

2Qi

3
− h2Q′′

i

6
− 2P ′

i

3

]
wi

+

[
1

h2
+
Pi

2h
− h

12
(−2Q′

i − P ′′
i )−

1

6
(−2P ′

i −Qi)

]
wi+1

= Ri +
h2

6
R′′

i − h2

6
PiR

′
i + T, (16)

where,

T =
h4

36
(2Q′

i + P ′′
i )w

(3)
i +

h4

36
(2P ′

i +Qi)w
(4)
i +

h4

360
w

(6)
i +

h4

120
Piw

(5)
i .

Finally, we obtain the following recurrence relation by multiplying both sides of
equation (16) by h2,

Eiwi−1 + Fiwi +Giwi+1 = Hi, for i = 1(1)N − 1, (17)

where,

Ei = 1− hPi

2
+
h3

12
(−2Q′

i − P ′′
i )−

h2

6
(−2P ′

i −Qi),

Fi = −2 +
2h2Qi

3
− h4Q′′

i

6
− 2h2P ′

i

3
,

Gi = 1 +
hPi

2
− h3

12
(−2Q′

i − P ′′
i )−

h2

6
(−2P ′

i −Qi),

Hi = h2Ri +
h4

6
R′′

i − h4

6
PiR

′
i.

The system (17) is of tridiagonal form and it can be solved using Thomas Algo-
rithm.
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4. Stability and Convergence Analysis

For the modified problem, we develop certain results regarding the solutions
and their derivatives. Let Lϵ,η be the differential operator for the problem (4)
and (5).

Lemma 4.1. Let x be a smooth function defined on Γ = (0, 1) and it satisfies
x(0) ≥ 0 and x(1) ≥ 0. Then Lϵ,ηx(z) ≥ 0, z ∈ Γ implies that x(z) ≥ 0, ∀z ∈ Γ̄.

Proof. Let us consider any aribtrary point in Γ, say z∗ which satisfies x(z∗) =
minz∈Γ̄{x(z)} and assume that x(z∗) < 0. It is clear that z∗ /∈ {0, 1}, also
x′(z∗) = 0 and x′′(z∗) ≥ 0. From (4), the operator,

Lϵ,ηx(z
∗) = ϵx′′(z∗) + c(z∗)x′(z∗) + d(z∗)x(z∗) ≤ 0,

which is a contradiction to our assumption Lϵ,η ≥ 0. Then it follows that
x(z∗) ≥ 0. Here we choose z∗ as arbitrary, we have x(z) ≥ 0, ∀x ∈ Γ̄. □

Lemma 4.2. The solution x(z) of the problem in (4) and (5) is bounded as

∥x(z)∥ ≤ θ−1∥g∥+max{| ψ(0) |, | γ(1) |}.

Proof. Let us consider the barrier function,

τ±(z) = θ−1∥g∥+max{| ψ(0) |, | γ(1) |} ± x(z).

Then we get τ±(0) ≥ 0 and τ±(1) ≥ 0, also we have,

Lϵ,ητ
±(z) = ϵ(τ±(z))′′ + c(z)(τ±(z))′ + d(z)(τ±(z))

= d(z)
(
θ−1∥g∥+max{| ψ(0) |, | γ(1) |}

)
± Lϵ,ηx(z)

= d(z)
(
θ−1∥g∥+max{| ψ(0) |, | γ(1) |}

)
± g(z)

Since d(z) < 0, we have d(z)θ−1 ≤ −1, thus we obtain,

Lϵ,ητ
±(z) ≤ (−∥g∥ ± g(z)) + d(z)max{| ψ(0) |, | γ(1) |} ≤ 0.

Since g(z) ≤ ∥g∥ for all z ∈ Γ. From the above lemma we get τ±(z) ≥ 0 for all
z ∈ Γ. Thus we obtain,

∥x(z)∥ ≤ θ−1∥g∥+max{| ψ(0) |, | γ(1) |}.

□

Lemma 4.3. The derivatives of the solution x(z) of the problem in (4) and (5)
satisfy,

∥xk∥ ≤M(µ− ηN)−k, k = 1, 2, 3.

Proof. For the proof, the reader can refer [2]. □

Lemma 4.4. Let U be the coefficient matrix associated with the system in (17)
, then for all ϵ > 0, the matrix U is irreducible and diagonally dominant.
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Proof. The equation (17) can be represented in matrix form as UW = V , where
U is a tri-diagonal matrix with Fi as diagonal elements and Ei, Gi as co-diagonal
elements. It is easily seen that Ei ̸= 0 and Gi ̸= 0, ∀i = 1, 2, ..., N − 1. Hence
U is irreducible and by our assumption d(z) < 0, we obtain |Ei + Gi| < |Fi|.
Thus, the matrix U is diagonally dominant. Hence, the scheme in equation (17)
is stable [6]. □

Theorem 4.5. Let x(zi) denote the analytical solution for the problem described
in (4) and (5) and the computational solution WN for the discretized problem
described in (17). Then

sup
0≤µ≤1

| x(zi)−WN |≤ C1N
−2,

holds for sufficiently large values of N .

Proof. We write (17) in matrix form as follows:

UW = V, (18)

where U = (uij), i = 1(1)N − 1, is a tridiagonal matrix of order N − 1. Here,

uii−1 = 1− hPi

2
+
h3

12
(−2Q′

i − P ′′
i )−

h2

6
(−2P ′

i −Qi),

uii = −2 +
2h2Pi

3
− h4Q′′

i

6
− 2h2P ′

i

3
,

uii+1 = 1 +
hPi

2
− h3

12
(−2Q′

i − P ′′
i )−

h2

6
(−2P ′

i −Qi).

V = (vi) is a column vector such that

v1 = −[ψ0E1 −H1],

vi = Hi, i = 2(1)N − 2,

vN−1 = −[γGN−1 −HN−1].

with a local truncation error,

Di(h) =
h4

36
K̄ +O(h5),

where,

K̄ = (2Q′
i + P ′′

i )w
(3)
i + (2P ′

i +Qi)w
(4)
i +

w
(6)
i

10
+

3Piw
(5)
i

10
.

(18) can also be written in error form as:

UW −D(h) = V. (19)

Here W is the exact solution and D(h) is the truncation error. From (18)
and (19), we get U(W −W ) = D(h), that is,

UE = D(h). (20)

For the matrix U , the sum of elements of the ith row be denoted by S̄i.
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S̄1 = −1 +
hPi

2
+ h2

[
2Qi

3
− 2P ′

i

3
− 1

6
(2P ′

i −Qi)

]
+ h3

[
− 1

12
(−2Q′

i − P ′′
i )

]
+ h4

(
−Q

′′
i

6

)
,

S̄i = h2Qi +O(h4), i = 2(1)N − 2,

S̄N−1 = −1− hPi

2
+ h2

[
2Qi

3
− 2P ′

i

3
− 1

6
(2P ′

i −Qi)

]
+ h3

[
1

12
(−2Q′

i − P ′′
i )

]
+ h4

(
−Q

′′
i

6

)
.

From theory of matrices, we get,

E = U−1D(h). (21)

Hence,

∥E∥ ≤ ∥U−1∥∥D(h)∥. (22)

Let the (j, i)-th element of U−1 be uj,i, which are non-negative. Then,

N−1∑
i=1

uj,iS̄i = 1, j = 1(1)N − 1.

Hence,

N−1∑
i=1

uj,i ≤
1

min1≤i≤N−1 Si
≤ 1

h2 | Qi0 |
, (23)

for some i0 between 1 and N − 1.
Equations (18), (21), (22) and (23) give,

ei =

N−1∑
j=1

uj,iDi(h) , i = 1(1)N − 1,

which implies

ei ≤

N−1∑
j=1

uj,i

 max
1≤i≤N−1

| Di(h) |

≤ 1

h2 | Qi0 |
× h4K̄

36
=

h2K̄

36 | Qi0 |
,

where K̄ does not depend on h. So ∥E∥ = O(h2) and hence our method is of
second order convergent. □
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5. Numerical Experiments

In this section, to validate the theoretical results, four numerical experiments
are taken into consideration to illustrate the applicability of the proposed method
having layer and oscillatory behaviour. We give tabulated solution of some
problems with varying µ and η. Since the exact solutions of the problems are
not known, the maximum absolute errors for the examples are determined using
the following double mesh principle,

EN = maxi | xNi − x2N2i | . (24)

Table 1. The maximum absolute error of Example 1

η N

100 200 300 400 500

0.03 1.4413e-08 3.6031e-09 1.6014e-09 9.0082e-10 5.7664e-10
0.05 2.7449e-08 6.8622e-09 3.0497e-09 1.7155e-09 1.0982e-09
0.09 4.9408e-08 1.2352e-08 5.4895e-09 3.0880e-09 1.9762e-09

Table 2. The maximum absolute error of Example 1

µ N

100 200 300 400 500

10−3 5.3595e-08 1.3399e-08 5.9551e-09 3.3500e-09 2.1435e-09
10−4 5.3999e-08 1.3499e-08 5.9995e-09 3.3753e-09 2.1600e-09
10−5 5.4039e-08 1.3510e-08 6.0040e-09 3.3779e-09 2.1616e-09
10−6 5.4043e-08 1.3511e-08 6.0044e-09 3.3779e-09 2.1621e-09
10−7 5.4044e-08 1.3511e-08 6.0047e-09 3.3781e-09 2.1613e-09
10−8 5.4044e-08 1.3511e-08 6.0046e-09 3.3782e-09 2.1625e-09

Table 3. Rate of convergence ρ of Example 1

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 3.3620e-06 1/400 8.4048e-07 2.0000
1/200 1/400 8.4048e-07 1/800 2.1013e-07 1.9999
1/300 1/600 3.7354e-07 1/1200 9.3439e-08 1.9992
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Example 1: Consider

µx′′(z) + x′(z − η)− x(z) = 0

with

x(z) = 1, −η ≤ z ≤ 0, x(1) = 0

(a) Example 1 (b) Example 2
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(c) Example 3 (d) Example 4
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Figure 1. The numerical solution for different values of µ

Table 4. The maximum absolute error of Example 2

µ N

100 200 300 400 500

0.03 3.9385e-08 9.8465e-09 4.3763e-09 2.4616e-09 1.5755e-09
0.05 3.6111e-08 9.0277e-09 4.0123e-09 2.2569e-09 1.4444e-09
0.09 1.4702e-07 3.6754e-08 1.6335e-08 9.1884e-09 5.8806e-09
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Table 5. Rate of convergence ρ of Example 2

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 6.4406e-06 1/400 1.6101e-06 2.0001
1/200 1/400 1.6101e-06 1/800 4.0252e-07 2.0000
1/300 1/600 7.1561e-07 1/1200 1.7890e-07 2.0000

(a) Example 1 (b) Example 2
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(c) Example 3 (d) Example 4
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Figure 2. The MAE for different values of µ and η = 0.5 ∗ µ

(a) Example 1 (b) Example 2
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(c) Example 3 (d) Example 4
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Figure 3. Loglog plot of maximum point-wise errors

Example 2: Consider

µx′′(z) + 0.25x′(z − η)− x(z) = 1

with

x(z) = 1, −η ≤ z ≤ 0, x(1) = 0

Table 6. The maximum absolute error of Example 3

µ N

100 200 300 400 500

0.03 1.8246e-09 4.5622e-10 2.0277e-10 1.1444e-10 7.2773e-11
0.05 4.1191e-09 1.0300e-09 4.5768e-10 2.5818e-10 1.6406e-10
0.09 1.1518e-08 2.8799e-09 1.2801e-09 7.1950e-10 4.5888e-10

Example 3: Consider

µx′′(z)− x′(z − η)− x(z) = 1

with

x(z) = 1, −η ≤ z ≤ 0, x(1) = 0

Example 4: Consider

µx′′(z)− (z2 + 1)x′(z − η)− (z + 1)x(z) = z2

with

x(z) = 1, −η ≤ z ≤ 0, x(1) = 0

The maximum absolute errors for Examples were assessed by varying the val-
ues of delay parameter and the findings are presented in Tables 1, 4, 6 and 8
which is then compared with the results in [2] and [19]. The information pre-
sented in Figure 2 illustrate a noticeable trend, wherein the maximum absolute
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Table 7. Rate of convergence ρ of Example 3

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 5.3293e-06 1/400 1.3323e-06 2.0000
1/200 1/400 1.3323e-06 1/800 3.3307e-07 2.0000
1/300 1/600 5.9213e-07 1/1200 1.4801e-07 2.0002

Table 8. The maximum absolute error of Example 4

µ N

100 200 300 400 500

0.03 4.7000e-09 2.6886e-09 1.8892e-09 1.4560e-09 1.1844e-09
0.05 2.3072e-08 1.2055e-08 8.1760e-09 6.1874e-09 4.9775e-09
0.09 1.0306e-07 5.1339e-08 3.4221e-08 2.5668e-08 2.0538e-08

errors consistently decrease with an increase in the step size. The numerical so-
lution of this SPDDE by setting delay parameter as 0.5 ∗ µ with 25 subintervals
is presented in Figure 1. The loglog plot of the maximum pointwise error is
also given in Figure 3 and the rate of convergence table is presented in Table 3,
Table 5 and Table 7.

The Rate of Convergence (ρ). We define Eh/2 in the same way as equa-
tion (24) as follows:

Eh/2 = maxi | xh/2i − x
h/4
i |, for i = 1(1)2N − 1.

The computational rate of convergence ρ is also obtained by using the double
mesh principle and is defined as

ρ =
log(Eh)− log

(
Eh/2

)
log 2

6. Discussion & Conclusion

The study introduces a numerical approximation for approaching SPDDEs
with small delay. Four examples have been taken into consideration, which are
not having exact solutions for various values of µ and η in order to show the
effectiveness of this method. The results are summarized in terms of maximum
absolute errors (Tables 1, 4, 6, 8) and it is discovered that the discussed trans-
formation gives an improvement to the findings of [2] and [19]. Also, graphs
have been used to show numerical solution of the problem to study the effect of
η on the solution profile. In addition to this, as h decreases(N increases), the
absolute error also decreases. By using truncation error, the rate of convergence
of the proposed scheme is determined to be two. The approach we used in ad-
dressing singularly perturbed small delay differential equations can be extended
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to partial differential equation problems as well as the problems with delay and
advanced parameters.
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