• Title/Summary/Keyword: Thiol redox

Search Result 46, Processing Time 0.032 seconds

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

Electrochemical Behaviors of ABTS2- on the Thiol-modified Gold Electrodes

  • Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.113-117
    • /
    • 2006
  • The electrochemical properties of the redox mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) ($ABTS^{2-}$) were studied using cyclic voltammetry. The measured potentials (${E^o}'$ vs SCE) of the two redox couples of ABTS are 0.45 V for $ABTS^{2-}/ABTS^{\cdot-}$ and 0.87 V for $ABTS^{\cdot-}/ABTS^0$. The rate constant for heterogeneous electron transfer and the diffusion coefficients for $ABTS^{2-}$ are $5x10^{-3}cm\;s^{-1}$ and $3.1x10^{-6}cm^2\;s^{-1}$, respectively. Our interest in $ABTS^{2-}$ stems from the fact that this molecule functions as a substrate to the copper oxidase, laccase, by providing the reducing equivalents necessary for the biocatalyzed reduction of dioxygen to water. Consequently, when laccase is tethered to an electrode surface or dissolved in solution, $ABTS^{2-}$ can be used to quantify enzyme activity electrochemically.

Adaptive Responses to Electrophilic Stress and Reactive Sulfur Species as their Regulator Molecules

  • Kumagai, Yoshito;Akiyama, Masahiro;Unoki, Takamitsu
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.303-310
    • /
    • 2019
  • We are exposed to numerous xenobiotic electrophiles on a daily basis through the environment, lifestyle, and dietary habits. Although such reactive species have been associated with detrimental effects, recent accumulated evidence indicates that xenobiotic electrophiles appear to act as signaling molecules. In this review, we introduce our findings on 1) activation of various redox signaling pathways involved in cell proliferation, detoxification/excretion of electrophiles, quality control of cellular proteins, and cell survival during exposure to xenobiotic electrophiles at low concentrations through covalent modification of thiol groups in sensor proteins, and 2) negative regulation of reactive sulfur species (RSS) in the modulation of redox signaling and toxicity caused by xenobiotic electrophiles.

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

Thioredoxin-Mediated Regulation of Protein Synthesis by Redox in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 산화환원에 의한 In Vitro 단백질합성의 Thioredoxin에 중재된 조절)

  • Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Redox signaling is one of way to regulate growth and death of cell in response to change of redox of proteins. To search whether translation is regulated by redox, we attempted in vitro translation assay under condition with or without DTT. Interestingly in vitro translation activity was increased up to 40% In the presence of dithiothreitol (DTT). Then we checked whether this positive effect by DTT was further accelerated by addition of thioredoxin (Trx). When a Trx purified from Saccharomyces cerevisiae was added to the in vitro translation extract, we observed a dose-dependent increase in translational activity. These results suggest the possibility of translation factors being redox-regulated via Trx in vivo.

Study the Electrochemical Reduction of Some Triazines in N,N-Dimethylformamide at Glassy Carbon Electrode

  • Fotouhi, L.;Farzinnegad, N.;Heravi, M.M.;Khaleghi, Sh.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1751-1756
    • /
    • 2003
  • An electrochemical study related to the electroreduction of 4-amino-6-methyl-3-thio-1,2,4-triazin-5-one(I), 6-methyl-3-thio-1,2,4-triazin-5-one(II), and 2,4-dimetoxy-6-methyl-1,3,5-triazine(III) in dimethylformamide at glassy carbon electrode has been performed. A variety of electrochemical techniques, such as differential pulse voltammetry (DPV), cyclic voltammetry (CV), chronoamperometry, and coulometry were employed to clarify the mechanism of the electrode process. The compounds I and II with thiol group exhibited similar redox behavior. Both displayed two cathodic peaks, whereas the third compound, III, without thiol group showed only one cathodic peak in the same potential range of the second peak of I and II. The results of this study suggest that in the first step the one electron reduction of thiol produced a disulfide derivative and in the second reduction step the azomethane in the triazine ring was reduced in two electron processes. A reduction mechanism for all three compounds is proposed on this basis. In addition, some numerical constants, such as diffusion constant, transfer coefficient, and rate constant of coupled chemical reaction in the first reduction peak were also reported.

Kinetic Approaches to Measuring Peroxiredoxin Reactivity

  • Winterbourn, Christine C.;Peskin, Alexander V.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • Peroxiredoxins are ubiquitous thiol proteins that catalyse the breakdown of peroxides and regulate redox activity in the cell. Kinetic analysis of their reactions is required in order to identify substrate preferences, to understand how molecular structure affects activity and to establish their physiological functions. Various approaches can be taken, including the measurement of rates of individual steps in the reaction pathway by stopped flow or competitive kinetics, classical enzymatic analysis and measurement of peroxidase activity. Each methodology has its strengths and they can often give complementary information. However, it is important to understand the experimental conditions of the assay so as to interpret correctly what parameter is being measured. This brief review discusses different kinetic approaches and the information that can be obtained from them.

Mechanism of Redox- and Metal-dependent Modulation of RsrA, an Anti-sigma Factor for Redox-dependent Regulation of Thioredoxin Operons in Streptomyces coelicolor

  • Bae, Jae-Bum;Park, Ju-Hong;Roe, Jung-Hye
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.63-63
    • /
    • 2001
  • SigR ($\sigma$$\^$R/) is a sigma factor responsible for inducing the thioredoxin system in response to oxidative stress in Streptomyces coelicolor. RsrA specifically binds to $\sigma$$\^$R/ and inhibits $\sigma$$\^$R/-directed transcription under reducing conditions. Exposure to H$_2$O$_2$ or thiol-specific oxidant diamide dissociates $\sigma$$\^$R/-RsrA complex. RsrA contains 7 cysteine residues in 105 total amino acid residues.(omitted)

  • PDF

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.