DOI QR코드

DOI QR Code

Electrochemical Behaviors of ABTS2- on the Thiol-modified Gold Electrodes

  • Published : 2006.08.01

Abstract

The electrochemical properties of the redox mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) ($ABTS^{2-}$) were studied using cyclic voltammetry. The measured potentials (${E^o}'$ vs SCE) of the two redox couples of ABTS are 0.45 V for $ABTS^{2-}/ABTS^{\cdot-}$ and 0.87 V for $ABTS^{\cdot-}/ABTS^0$. The rate constant for heterogeneous electron transfer and the diffusion coefficients for $ABTS^{2-}$ are $5x10^{-3}cm\;s^{-1}$ and $3.1x10^{-6}cm^2\;s^{-1}$, respectively. Our interest in $ABTS^{2-}$ stems from the fact that this molecule functions as a substrate to the copper oxidase, laccase, by providing the reducing equivalents necessary for the biocatalyzed reduction of dioxygen to water. Consequently, when laccase is tethered to an electrode surface or dissolved in solution, $ABTS^{2-}$ can be used to quantify enzyme activity electrochemically.

Keywords

References

  1. F. Xu, J. Biol. Chem., 272, 921 (1997)
  2. A. Naqui and S. D. Varfolomeev, FEBS Lett., 113, 157 (1980) https://doi.org/10.1016/0014-5793(80)80581-3
  3. G. B. Koudelka and M. J. Ettinger, J. Biol. Chem. 263, 3698 (1988)
  4. A. Dalmia, R. F. Savinell, and C. C. Liu, J. Electro. Chem. Soc., 143, 1827 (1996) https://doi.org/10.1149/1.1836911
  5. D. Leech and F. Daigle, Analyst, 123, 1971 (1998) https://doi.org/10.1039/a803313g
  6. F. Trudeau, F. Daigle, and D. Leech, Anal. Chem., 69, 882 (1997) https://doi.org/10.1021/ac960554d
  7. R. R. Malkin and B. G. Malmstrom, Adv. Enzymol., 33, 177 (1970)
  8. L.-E. Andreisson. R. Branden. and B. Reinhanunar. Biochim. Biophys. Acta, 438 (1976)
  9. M. R. Tarasevich, A. I. Yaropolov, V. A. Bogdanovskaya, and S. D. Varfolomeev, J. Electroanal. Chem., 104, 393 (1979) https://doi.org/10.1016/S0022-0728(79)81047-5
  10. L. Venkatasubramanian and P. Maruthamuthu, Int. J. Chem. Kinetics, 21, 399 (1989) https://doi.org/10.1002/kin.550210604
  11. R. E. Childs and W. G Bardsley, J. Biochem., 145, 93 (1975) https://doi.org/10.1042/bj1450093
  12. P. A. Adams, J. Chem. Soc. Perkin Trans., 2, 1407 (1990)
  13. P. Maruthamuthu, D. K. Sharma, and N. Serpone, J. Phys. Chem., 99, 3636 (1995) https://doi.org/10.1021/j100011a034
  14. R. Bourbonnais and M. G. Paice, Appl. Microbiol. Biotechnol., 36, 823 (1992)
  15. V. A. Bogdanovskaya, E. F. Gavrilova, and M. R. Tarasevich, Elektrokhirniya, 22, 742 (1986)
  16. C.-W. Lee, H. B. Gray, F. C. Anson, and B. G. Malmstrom, J. Electroanal. Chem., 172, 289 (1984) https://doi.org/10.1016/0022-0728(84)80193-X
  17. J. Ohkawa, N. Okada, A. Shinmyo, and M. Takano, Proc. Natl. Acad Sci., 86, 1239 (1989) https://doi.org/10.1073/pnas.86.4.1239
  18. G. T. R. Palmore and H.-H. Kim, J. Electroanal. Chem., 464, 110 (1999) https://doi.org/10.1016/S0022-0728(99)00008-X
  19. E. Steckhan and T. Kuwana, Ber. Bunsen., 78, 253 (1974)
  20. A. J. Bard and L. R. Faulkner, 'Electrochemical Methods', John Wiley & Sons, New York (2000)
  21. R. S. Nicholson and L. Shain, Anal. Chem., 36, 706 (1964) https://doi.org/10.1021/ac60210a007
  22. R. S. Nicholson, Anal. Chem., 37, 1351 (1965) https://doi.org/10.1021/ac60230a016
  23. J. Heinze, Ber. Bunsenges. Phys. Chem., 85, 1096 (1981) https://doi.org/10.1002/bbpc.19810851204
  24. C. R. Cantor and P. R. Schimmel, 'Biophysical Chemistry', Freeman, New York, (1980)

Cited by

  1. A nitrogen dioxide delivery system for biological media vol.56, 2013, https://doi.org/10.1016/j.freeradbiomed.2012.10.534