DOI QR코드

DOI QR Code

The Role of DNA Binding Domain in hHSF1 through Redox State

산화환원에 따른 hHSF1의 DNA binding domain의 역할

  • Kim, Sol (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University) ;
  • Hwang, Yun-Jeong (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University) ;
  • Kim, Hee-Eun (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University) ;
  • Lu, Ming (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University) ;
  • Kim, An-D-Re (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University) ;
  • Moon, Ji-Young (Department of Molecular biology, Pusan National University) ;
  • Kang, Ho-Sung (Department of Molecular biology, Pusan National University) ;
  • Park, Jang-Su (Department of Chemistry and Centre for Innovative Bio.physio sensor Technology, Pusan National University)
  • 김솔 (부산대학교 화학과.신개념바이오피지오센서기술연구센터) ;
  • 황윤정 (부산대학교 화학과.신개념바이오피지오센서기술연구센터) ;
  • 김희은 (부산대학교 화학과.신개념바이오피지오센서기술연구센터) ;
  • 여명 (부산대학교 화학과.신개념바이오피지오센서기술연구센터) ;
  • 김안드레 (부산대학교 화학과.신개념바이오피지오센서기술연구센터) ;
  • 문지영 (부산대학교 분자생물학과) ;
  • 강호성 (부산대학교 분자생물학과) ;
  • 박장수 (부산대학교 화학과.신개념바이오피지오센서기술연구센터)
  • Published : 2006.10.01

Abstract

The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

다양한 종류의 박테리아에서부터 사람의 세포에 이르기까지 환경적인 스트레스나 병에 의한 스트레스 혹은 스트레스가 없는 상황에서도 열충격반응(heat shock response) 유도되어진다. 열충격반응에 노출된 세포에서는 모든 단백질의 발현이 정지되는 반면, 열충격단백질(heat shock proteins: HSPs)은 발현되어 스트레스로부터 세포를 보호한다. HSF1(heat shock factor 1)이라는 HSPs 유도단백질은 열충격반응시 단량체형태에서 삼중체의 형태로 구조변화를 일으켜 heat shock element(HSE)라고 불리우는 HSP gene의 발현 promoter에 특이적으로 결합하게 되어 HSPs를 발현시킨다. Human HSF1(hHSF1)은 다섯 개의 시스테인 잔기를 가지고 있는데 이 시스테인의 thiol(-SH)기는 강한 친전자성을 띔으로 급격히 산화되거나 질산화된다. 이러한 고찰은 시스테인 잔기가 산화 환원 의존적인 황산기/이황화결합 전환을 통해 구조적인 변화를 가져온다는 사실을 의미하고 있다. 따라서 본 연구에서는 여러 가지 산화환원제를 이용하여 HSF1에 존재하는 다섯 개의 시스테인 잔기의 역할과 삼량체 형성에 관여하는 잔기에 대하여 알아보고자 하였다. 또한 이황화결합을 통한 삼량체형성의 구조적변화의 관점에서 HSF1의 구조 변화와 DNA 결합력과의 상관관계에 관하여도 알아보고자 하였다. 본 연구결과로 HSF1의 DNA binding domain은 삼량체를 형성하는 구조적인 변화를 통해서 DNA에 대한 결합력이 증가되는 것을 알 수 있었는데 이것은 삼량체가 됨으로서 HSF1의 내부에 위치해 있던 DNA binding domain이 외부로 노출 되어져 DNA에 쉽게 결합할 수 있게 된다는 사실을 시사한다.

Keywords

References

  1. Liu P. C. C. and D. J. Thiele, 1999. Modulation of Human Heat Shock Factor Trimerization by the Linker Domain. The Journal of Biological Chemistry 274, 17219-17225 https://doi.org/10.1074/jbc.274.24.17219
  2. Shi Y., D. D. Mosser, and R. I. Morimoto, 1998. Molecular chapelones as HSF1-specific transcriptional repressors. Genes & Development 12, 654-666 https://doi.org/10.1101/gad.12.5.654
  3. Dai R., W. Frejtag, B. He, Y. Zhang, and N. F. Mivech, 2000. c-Jun $NH_2-terminal$ Kinase Targeting and Phosphorylation of Heat Shock Factor-1 Suppress Its Transcriptional Activity. The Journal of Biological Chemistry 275, 18210-18218 https://doi.org/10.1074/jbc.M000958200
  4. Ahn S. G., and D. J. Thiele, 2003. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes & Development 17, 516-528 https://doi.org/10.1101/gad.1044503
  5. Westerheide S. D. and R. I. Morimoto, 2005. Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation. The Journal of Biological Chemistry 280, 33097-33100 https://doi.org/10.1074/jbc.R500010200
  6. Bharadwaj S., A. Ali, and N. Ovsenek, 1999. Multiple Components of the HSP90 Chaperone Complex Function in Regulation of Heat Shock Factor 1 in Vivo. Molecular and Cellular Biology 19, 8033-8041 https://doi.org/10.1128/MCB.19.12.8033
  7. Chen T. and C. S. Parker, 2001. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Proceedings of National Academy of Science 99, 1200-1205
  8. Kim S. A., J. H. Yoon, S. H. Lee, and S. G. Ahn, 2005. Polo-like Kinase 1 Phospholylates Heat Shock Transcription Factor 1 and Mediates Its Nuclear Translocation during Heat Stress. The Journal of Biological Chemistry 280, 12653-12657 https://doi.org/10.1074/jbc.M411908200
  9. Morimoto R. I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes & Development 12, 3788-3796 https://doi.org/10.1101/gad.12.24.3788
  10. Pirkkala L., T. P. Alastalo, X. Zuo, I. J. Benjamin, and L. Sistonen, 2000. Distruption of Heat Shock Factor 1 Reveals an Essential Role in the Ubiquitin Proteolytic Pathway. Molecular and Cellular Biology 20, 2670-2675 https://doi.org/10.1128/MCB.20.8.2670-2675.2000
  11. Green M., T. J. Schuetz, K. Sullivan, and R. E. Kingston, 1995. A Heat Shock-Responsive Domain of Human HSF1 That Regulates Transcription Activation Domain Function. Molecular and Cellular Biology 12, 3354-3362
  12. Choi H. S., Z. Lin, B. Li, and Y. C. Liu, 1990. Age-dependent Decrease in the Heat-inducible DNA Sequencespecific Binding Activity in Human Diploid Fibroblasts. The Journal of Biological Chemistry 265, 18005-18011
  13. Lu J., J. H. Park, Y. C. Liu, and K. Y. Chen, 2000. Activation of Heat Shock Factor 1 by Hyperosmotic or Hypo-Osmotic Stress Is Drastically Attenuated in Normal Human Fibroblasts During Senescence. Journal of Cellular Physiology 184, 183-190 https://doi.org/10.1002/1097-4652(200008)184:2<183::AID-JCP5>3.0.CO;2-9
  14. Paroo Z., M. J. Meredith, M. Locke, J. V. Haist, M. Karmazyn, and E. G. Noble, 2002. Redox signaling of cardiac HSF1 DNA binding. American Physiological Society 283, C404-C411 https://doi.org/10.1152/ajpcell.00051.2002
  15. Shamovsky, I. and D. Gershon, 2004. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of heat shock response. Mechanisms of Aging and Development 125, 767-775 https://doi.org/10.1016/j.mad.2004.07.006
  16. Bonner, J. J., D. Chen, K. Storey, M. Tushan, and K. Lea, 2000. Structural Analysis of Yeast HSF by Site-specipic Crosslinking. Journal of Molecular Biology 302, 581-592 https://doi.org/10.1006/jmbi.2000.4096
  17. Holmberg, C. I., S. E. F. Tran, J. E. Eriksson, and L. Sistonen, 2002. Multisite phosphorylation provides sophisticated regulation of transcription factors. TRENS in Biochemical Sciences 27, 619-627 https://doi.org/10.1016/S0968-0004(02)02207-7
  18. Dai, Q., C. Zhang, Y. Wu, H. McDonough, R. A. Whaley, V. Godfrey, H. H. Li, N. Madamanchi, W. Xu, L. Neckers, and C. Patterson, 2003. CHIP activate HSF1 and confers protection against apoptosis and cellular stress. European Molecular Biology Organization Journal 22, 5446- 5458 https://doi.org/10.1093/emboj/cdg529
  19. Jacquier-Sarlin, M. R. and B. S. Polla, 1996. Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by $H_2O_2$ : role of thioredoxin. Biochemistry 318, 187-193 https://doi.org/10.1042/bj3180187
  20. Kim, H. R., H. S. Kang, and H. D. Kim, 1999. Geldanamycin Induces Heat Shock Protein Expression Through Activation of HSF1 in K562 Erythroleukemic Cells. JUBMB Life 48, 429-433
  21. Galan, A., A. Troyano, N. E. Vilaboa, C. Fernandez, E. D. Blas, and P. Aller, 2001. Modulation of the stress response during apoptosis and necrosis induction in cadmiumtreated U-937 human promonocytic cells. Biochimica et Biophysica Acta 1538, 38-46 https://doi.org/10.1016/S0167-4889(00)00134-8
  22. Manalo, D. J. and A. Y. Liu, 2001. Resolution, Detection, and Characterization of Redox Conformers of Human HSF1. The Journal of Biological Chemistry 276, 23554-23561 https://doi.org/10.1074/jbc.M011300200
  23. Manalo, D. J., Z. Lin, and A. Y. Liu, 2002. Redox- Dependent Regulation of the Conformation and Function of Human Heat Shock Factor 1. Biochemistry 41, 2580-2588 https://doi.org/10.1021/bi0159682