References
- Chae, H.Z., Kim, H.J., Kang, S.W., and Rhee, S.G. (1999). Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract. 45, 101-112. https://doi.org/10.1016/S0168-8227(99)00037-6
- Cox, A.G., Pearson, A.G., Pullar, J.M., Jonsson, T.J., Lowther, W.T., Winterbourn, C., and Hampton, M.B. (2009a). Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochem. J. 421, 51-58. https://doi.org/10.1042/BJ20090242
- Cox, A.G., Peskin, A.V., Paton, L.N., Winterbourn, C.C., and Hampton, M.B. (2009b). Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48, 6495-6501. https://doi.org/10.1021/bi900558g
- Hall, A., Parsonage, D., Poole, L.B., and Karplus, P.A. (2010). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194-209. https://doi.org/10.1016/j.jmb.2010.07.022
- Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
- Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Alvarez, B., Radi, R., and Trujillo, M. (2009). Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 48, 9416-9426. https://doi.org/10.1021/bi901221s
- Karplus, P.A. (2015). A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80, 183-190. https://doi.org/10.1016/j.freeradbiomed.2014.10.009
- Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146-154. https://doi.org/10.1016/j.abb.2008.11.017
- Nagy, P., Karton, A., Betz, A., Peskin, A.V., Pace, P., O'Reilly, R.J., Hampton, M.B., Radom, L., and Winterbourn, C.C. (2011). Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 286, 18048-18055. https://doi.org/10.1074/jbc.M111.232355
- Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., and Inoue, T. (2010). Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147, 109-115. https://doi.org/10.1093/jb/mvp154
- Nelson, K.J., and Parsonage, D. (2011). Measurement of peroxiredoxin activity. Curr. Protoc. Toxicol. Chapter 7, Unit7 10.
- Nelson, K.J., Parsonage, D., Karplus, P.A., and Poole, L.B. (2013). Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol. 527, 21-40. https://doi.org/10.1016/B978-0-12-405882-8.00002-7
- Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., and Augusto, O. (2007). Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326-334. https://doi.org/10.1016/j.freeradbiomed.2006.10.042
- Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
- Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015). Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54, 1567-1575. https://doi.org/10.1021/bi501515w
- Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. https://doi.org/10.1074/jbc.M700339200
- Peskin, A.V., Cox, A.G., Nagy, P., Morgan, P.E., Hampton, M.B., Davies, M.J., and Winterbourn, C.C. (2010). Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem. J. 432, 313-321. https://doi.org/10.1042/BJ20101156
- Peskin, A.V., Dickerhof, N., Poynton, R.A., Paton, L.N., Pace, P.E., Hampton, M.B., and Winterbourn, C.C. (2013). Hyperoxidation of Peroxiredoxins 2 and 3: Rate constants for the reactions of the sulfenic acid of the peroxidative cysteine. J. Biol. Chem. 288, 14170-14177. https://doi.org/10.1074/jbc.M113.460881
- Peskin, A.V., Pace, P.E., Behring, J.B., Paton, L.N., Soethoudt, M., Bachschmid, M.M., and Winterbourn, C.C. (2016). Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J. Biol. Chem. in press.
- Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 467, 95-106. https://doi.org/10.1016/j.abb.2007.08.008
- Trujillo, M., Ferrer-Sueta, G., and Radi, R. (2008). Kinetic studies on peroxynitrite reduction by peroxiredoxins. Methods Enzymol. 441, 173-196. https://doi.org/10.1016/S0076-6879(08)01210-X
- Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561. https://doi.org/10.1016/j.freeradbiomed.2008.05.004
- Winterbourn, C.C., and Hampton, M.B. (2015) Redox biology: signaling via a peroxiredoxin sensor. Nat. Chem. Biol. 11, 5-6. https://doi.org/10.1038/nchembio.1722
- Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
- Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036. https://doi.org/10.1074/jbc.M206626200
Cited by
- Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
- Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 vol.292, pp.21, 2017, https://doi.org/10.1074/jbc.M116.767657
- The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints vol.292, pp.17, 2017, https://doi.org/10.1074/jbc.M116.743765
- The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs 2017, https://doi.org/10.1089/ars.2017.7162
- A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation vol.14, pp.2, 2017, https://doi.org/10.1038/nchembio.2536
- Piecing Together How Peroxiredoxins Maintain Genomic Stability vol.7, pp.12, 2018, https://doi.org/10.3390/antiox7120177
- The Multifaceted Impact of Peroxiredoxins on Aging and Disease vol.29, pp.13, 2018, https://doi.org/10.1089/ars.2017.7452
- ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications vol.52, pp.5, 2018, https://doi.org/10.1080/10715762.2018.1457217
- Administration of exercise-conditioned plasma alters muscle catalase kinetics in rat: An argument for in vivo -like K m instead of in vitro -like V max vol.15, pp.None, 2016, https://doi.org/10.1016/j.redox.2018.01.001
- Quaternary structure influences the peroxidase activity of peroxiredoxin 3 vol.497, pp.2, 2018, https://doi.org/10.1016/j.bbrc.2018.02.093
- Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease vol.31, pp.14, 2016, https://doi.org/10.1089/ars.2019.7752
- Redox Signaling from Mitochondria: Signal Propagation and Its Targets vol.10, pp.1, 2016, https://doi.org/10.3390/biom10010093
- The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species vol.131, pp.None, 2020, https://doi.org/10.1016/j.mvr.2020.104010
- The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles? vol.86, pp.1, 2021, https://doi.org/10.1134/s0006297921010089
- Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation vol.697, pp.None, 2016, https://doi.org/10.1016/j.abb.2020.108671
- Thiol-based switching mechanisms of stress-sensing chaperones vol.402, pp.3, 2021, https://doi.org/10.1515/hsz-2020-0262
- Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila vol.10, pp.4, 2016, https://doi.org/10.3390/antiox10040606
- Specificity of Human Sulfiredoxin for Reductant and Peroxiredoxin Oligomeric State vol.10, pp.6, 2016, https://doi.org/10.3390/antiox10060946
- Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation vol.12, pp.1, 2016, https://doi.org/10.1038/s41467-021-26991-5