DOI QR코드

DOI QR Code

Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

  • Toledano, Michel B. (CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer(LSOC)) ;
  • Huang, Bo (CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer(LSOC))
  • Received : 2015.11.30
  • Accepted : 2015.12.02
  • Published : 2016.01.31

Abstract

The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of $H_2O_2$ and as $H_2O_2$ receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of $H_2O_2$, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of $H_2O_2$. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of $H_2O_2$.

Keywords

References

  1. An, B.C., Lee, S.S., Lee, E.M., Lee, J.T., Wi, S.G., Jung, H.S., Park, W., and Chung, B.Y. (2010). A new antioxidant with dual functions as a peroxidase and chaperone in Pseudomonas aeruginosa. Mo. Cells 29, 145-151. https://doi.org/10.1007/s10059-010-0023-1
  2. Angelucci, F., Saccoccia, F., Ardini, M., Boumis, G., Brunori, M., Di Leandro, L., Ippoliti, R., Miele, A.E., Natoli, G., Scotti, S., et al. (2013). Switching between the alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed mutagenesis. J. Mol. Biol. 425, 4556-4568. https://doi.org/10.1016/j.jmb.2013.09.002
  3. Avery, A.M., and Avery, S.V. (2001). Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276, 33730-33735. https://doi.org/10.1074/jbc.M105672200
  4. Avery, A.M., Willetts, S.A., and Avery, S.V. (2004). Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J. Biol. Chem. 279, 46652-46658. https://doi.org/10.1074/jbc.M408340200
  5. Banerjee, M., Chakravarty, D., and Ballal, A. (2015). Redoxdependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. BMC Plant Biol. 15, 60. https://doi.org/10.1186/s12870-015-0444-2
  6. Barranco-Medina, S., Kakorin, S., Lazaro, J.J., and Dietz, K.J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin. Biochemistry 47, 7196-7204. https://doi.org/10.1021/bi8002956
  7. Barranco-Medina, S., Lazaro, J.J., and Dietz, K.J. (2009). The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 583, 1809-1816. https://doi.org/10.1016/j.febslet.2009.05.029
  8. Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. https://doi.org/10.1038/nature02075
  9. Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., and Morgan, B.A. (2005). Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280, 23319-23327. https://doi.org/10.1074/jbc.M502757200
  10. Brown, J.D., Day, A.M., Taylor, S.R., Tomalin, L.E., Morgan, B.A., and Veal, E.A. (2013). A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep. 5, 1425-1435. https://doi.org/10.1016/j.celrep.2013.10.036
  11. Calvo, I.A., Boronat, S., Domenech, A., Garcia-Santamarina, S., Ayte, J., and Hidalgo, E. (2013). Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep. 5, 1413-1424. https://doi.org/10.1016/j.celrep.2013.11.027
  12. Cao, Z., Roszak, A.W., Gourlay, L.J., Lindsay, J.G., and Isaacs, N.W. (2005). Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13, 1661-1664. https://doi.org/10.1016/j.str.2005.07.021
  13. Carlioz, A., and Touati, D. (1986). Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5, 623-630.
  14. Castro, H., Teixeira, F., Romao, S., Santos, M., Cruz, T., Florido, M., Appelberg, R., Oliveira, P., Ferreira-da-Silva, F., and Tomas, A.M. (2011). Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity. PLoS Pathogens 7, e1002325. https://doi.org/10.1371/journal.ppat.1002325
  15. Chabes, A., Georgieva, B., Domkin, V., Zhao, X., Rothstein, R., and Thelander, L. (2003). Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112, 391-401. https://doi.org/10.1016/S0092-8674(03)00075-8
  16. Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994a). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
  17. Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
  18. Chen, J.W., Dodia, C., Feinstein, S.I., Jain, M.K., and Fisher, A.B. (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J. Biol. Chem. 275, 28421-28427. https://doi.org/10.1074/jbc.M005073200
  19. Chuang, M.H., Wu, M.S., Lo, W.L., Lin, J.T., Wong, C.H., and Chiou, S.H. (2006). The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. USA 103, 2552-2557. https://doi.org/10.1073/pnas.0510770103
  20. Cordray, P., Doyle, K., Edes, K., Moos, P.J., and Fitzpatrick, F.A. (2007). Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2. J. Biol. Chem. 282, 32623-32629. https://doi.org/10.1074/jbc.M704369200
  21. Delaunay, A., Isnard, A.D., and Toledano, M.B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19, 5157-5166. https://doi.org/10.1093/emboj/19.19.5157
  22. Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
  23. Fomenko, D.E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J.C., Siu, K.L., Jin, D.Y., Winge, D.R., et al. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729-2734. https://doi.org/10.1073/pnas.1010721108
  24. Fourquet, S., Huang, M.E., D'Autreaux, B., and Toledano, M.B. (2008). The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid. Redox Signal. 10, 1565-1576. https://doi.org/10.1089/ars.2008.2049
  25. Godon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., and Labarre, J. (1998). The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489. https://doi.org/10.1074/jbc.273.35.22480
  26. Gourlay, L.J., Bhella, D., Kelly, S.M., Price, N.C., and Lindsay, J.G. (2003). Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-CYS peroxiredoxin organized as a decameric toroid. J. Biol. Chem. 278, 32631-32637. https://doi.org/10.1074/jbc.M303862200
  27. Hall, A., Parsonage, D., Poole, L.B., and Karplus, P.A. (2010). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194-209. https://doi.org/10.1016/j.jmb.2010.07.022
  28. Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
  29. Huang, M.E., Rio, A.G., Nicolas, A., and Kolodner, R.D. (2003). A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100, 11529-11534. https://doi.org/10.1073/pnas.2035018100
  30. Huang, M.E., and Kolodner, R.D. (2005). A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17, 709-720. https://doi.org/10.1016/j.molcel.2005.02.008
  31. Imlay, J.A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443-454. https://doi.org/10.1038/nrmicro3032
  32. Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999). Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274, 27002-27009. https://doi.org/10.1074/jbc.274.38.27002
  33. Jacobson, F.S., Morgan, R.W., Christman, M.F., and Ames, B.N. (1989). An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J. Biol. Chem. 264, 1488-1496.
  34. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
  35. Jang, H.H., Kim, S.Y., Park, S.K., Jeon, H.S., Lee, Y.M., Jung, J.H., Lee, S.Y., Chae, H.B., Jung, Y.J., Lee, K.O., et al. (2006). Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions. FEBS Lett. 580, 351-355. https://doi.org/10.1016/j.febslet.2005.12.030
  36. Jeong, J.S., Kwon, S.J., Kang, S.W., Rhee, S.G., and Kim, K. (1999). Purification and characterization of a second type thioredoxin peroxidase (type II TPx) from Saccharomyces cerevisiae. Biochemistry 38, 776-783. https://doi.org/10.1021/bi9817818
  37. Karplus, P.A. (2015). A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80, 183-190. https://doi.org/10.1016/j.freeradbiomed.2014.10.009
  38. Kaya, A., Lobanov, A.V., Gerashchenko, M.V., Koren, A., Fomenko, D.E., Koc, A., and Gladyshev, V.N. (2014). Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae. Genetics 198, 905-917. https://doi.org/10.1534/genetics.114.169243
  39. Kaya, A., Gerashchenko, M.V., Seim, I., Labarre, J., Toledano, M.B., and Gladyshev, V.N. (2015). Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc. Natl. Acad. Sci. USA 112, 10685-10690. https://doi.org/10.1073/pnas.1505315112
  40. Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
  41. Kim, I.H., Kim, K., and Rhee, S.G. (1989). Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. USA 86, 6018-6022. https://doi.org/10.1073/pnas.86.16.6018
  42. Konig, J., Galliardt, H., Jutte, P., Schaper, S., Dittmann, L., and Dietz, K.J. (2013). The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64, 3483-3497. https://doi.org/10.1093/jxb/ert184
  43. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., and Toledano, M.B. (1999a). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046. https://doi.org/10.1074/jbc.274.23.16040
  44. Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. (1999b). A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274, 4537-4544. https://doi.org/10.1074/jbc.274.8.4537
  45. Lim, J.C., Choi, H.I., Park, Y.S., Nam, H.W., Woo, H.A., Kwon, K.S., Kim, Y.S., Rhee, S.G., Kim, K., and Chae, H.Z. (2008). Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 283, 28873-28880. https://doi.org/10.1074/jbc.M804087200
  46. Lin, H., Li, L., Jia, X., Ward, D.M., and Kaplan, J. (2011). Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J. Biol. Chem. 286, 3851-3862. https://doi.org/10.1074/jbc.M110.190959
  47. Ma, L.H., Takanishi, C.L., and Wood, M.J. (2007). Molecular mechanism of oxidative stress perception by the Orp1 protein. J. Biol. Chem. 282, 31429-31436. https://doi.org/10.1074/jbc.M705953200
  48. MacDiarmid, C.W., Taggart, J., Kerdsomboon, K., Kubisiak, M., Panascharoen, S., Schelble, K., and Eide, D.J. (2013). Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J. Biol. Chem. 288, 31313-31327. https://doi.org/10.1074/jbc.M113.512384
  49. McCord, J.M., and Fridovich, I. (1969). The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem. 244, 6056-6063.
  50. Molin, M., Yang, J., Hanzen, S., Toledano, M.B., Labarre, J., and Nystrom, T. (2011). Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol. Cell 43, 823-833. https://doi.org/10.1016/j.molcel.2011.07.027
  51. Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280, 28775-28784. https://doi.org/10.1074/jbc.M505362200
  52. Moon, J.C., Kim, G.M., Kim, E.K., Lee, H.N., Ha, B., Lee, S.Y., and Jang, H.H. (2013). Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin. Biochem. Biophys. Res. Commun. 432, 291-295. https://doi.org/10.1016/j.bbrc.2013.01.114
  53. Munhoz, D.C., and Netto, L.E. (2004). Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast. J. Biol. Chem. 279, 35219-35227. https://doi.org/10.1074/jbc.M313773200
  54. Nelson, K.J., Parsonage, D., Hall, A., Karplus, P.A., and Poole, L.B. (2008). Cysteine pK(a) values for the bacterial peroxiredoxin AhpC. Biochemistry 47, 12860-12868. https://doi.org/10.1021/bi801718d
  55. Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
  56. Noichri, Y., Palais, G., Ruby, V., D'Autreaux, B., Delaunay-Moisan, A., Nystrom, T., Molin, M., and Toledano, M.B. (2015). In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation. Redox. Biol. 6, 326-333. https://doi.org/10.1016/j.redox.2015.08.011
  57. Pan, Y., Jin, J.H., Yu, Y., and Wang, J. (2014). Significant enhancement of hPrx1 chaperone activity through lysine acetylation. Chembiochem 15, 1773-1776. https://doi.org/10.1002/cbic.201402164
  58. Park, S.G., Cha, M.K., Jeong, W., and Kim, I.H. (2000). Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723-5732. https://doi.org/10.1074/jbc.275.8.5723
  59. Park, S., You, X., and Imlay, J.A. (2005). Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 102, 9317-9322. https://doi.org/10.1073/pnas.0502051102
  60. Park, J.W., Piszczek, G., Rhee, S.G., and Chock, P.B. (2011). Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry 50, 3204-3210. https://doi.org/10.1021/bi101373h
  61. Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
  62. Parsonage, D., Karplus, P.A., and Poole, L.B. (2008). Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc. Natl. Acad. Sci. USA 105, 8209-8214. https://doi.org/10.1073/pnas.0708308105
  63. Pedrajas, J.R., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, J.A., and Spyrou, G. (2000). Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275, 16296-16301. https://doi.org/10.1074/jbc.275.21.16296
  64. Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156-163. https://doi.org/10.1038/nchembio.1720
  65. Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. https://doi.org/10.1074/jbc.M700339200
  66. Phalen, T.J., Weirather, K., Deming, P.B., Anathy, V., Howe, A.K., van der Vliet, A., Jonsson, T.J., Poole, L.B., and Heintz, N.H. (2006). Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175, 779-789. https://doi.org/10.1083/jcb.200606005
  67. Ragu, S., Faye, G., Iraqui, I., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. (2007). Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl. Acad. Sci. USA 104, 9747-9752. https://doi.org/10.1073/pnas.0703192104
  68. Ragu, S., Dardalhon, M., Sharma, S., Iraqui, I., Buhagiar-Labarchede, G., Grondin, V., Kienda, G., Vernis, L., Chanet, R., Kolodner, R.D., et al. (2014). Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 9, e108123. https://doi.org/10.1371/journal.pone.0108123
  69. Ross, S.J., Findlay, V.J., Malakasi, P., and Morgan, B.A. (2000). Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11, 2631-2642. https://doi.org/10.1091/mbc.11.8.2631
  70. Sabouri, N., Viberg, J., Goyal, D.K., Johansson, E., and Chabes, A. (2008). Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Res. 36, 5660-5667. https://doi.org/10.1093/nar/gkn555
  71. Saccoccia, F., Di Micco, P., Boumis, G., Brunori, M., Koutris, I., Miele, A.E., Morea, V., Sriratana, P., Williams, D.L., Bellelli, A., et al. (2012). Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20, 429-439. https://doi.org/10.1016/j.str.2012.01.004
  72. Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., and Karplus, P.A. (2005). Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J. Mol. Biol. 346, 1021-1034. https://doi.org/10.1016/j.jmb.2004.12.022
  73. Seaver, L.C., and Imlay, J.A. (2001). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173-7181. https://doi.org/10.1128/JB.183.24.7173-7181.2001
  74. Smith, S., Hwang, J.Y., Banerjee, S., Majeed, A., Gupta, A., and Myung, K. (2004). Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 9039-9044. https://doi.org/10.1073/pnas.0403093101
  75. Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695
  76. Soito, L., Williamson, C., Knutson, S.T., Fetrow, J.S., Poole, L.B., and Nelson, K.J. (2011). PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 39, D332-337. https://doi.org/10.1093/nar/gkq1060
  77. Storz, G., Jacobson, F.S., Tartaglia, L.A., Morgan, R.W., Silveira, L.A., and Ames, B.N. (1989). An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J. Bacteriol. 171, 2049-2055. https://doi.org/10.1128/jb.171.4.2049-2055.1989
  78. Tachibana, T., Okazaki, S., Murayama, A., Naganuma, A., Nomoto, A., and Kuge, S. (2009). A Major Peroxiredoxin-induced Activation of Yap1 Transcription Factor Is Mediated by Reduction-sensitive Disulfide Bonds and Reveals a Low Level of Transcriptional Activation. J. Biol. Chem. 284, 4464-4472. https://doi.org/10.1074/jbc.M807583200
  79. Tanaka, T., Izawa, S., and Inoue, Y. (2005). GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280, 42078-42087. https://doi.org/10.1074/jbc.M508622200
  80. Tang, H.M., Siu, K.L., Wong, C.M., and Jin, D.Y. (2009). Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels. PLoS Genet. 5, e1000697. https://doi.org/10.1371/journal.pgen.1000697
  81. Teixeira, F., Castro, H., Cruz, T., Tse, E., Koldewey, P., Southworth, D.R., Tomas, A.M., and Jakob, U. (2015). Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc. Natl. Acad. Sci. USA 112, E616-624. https://doi.org/10.1073/pnas.1419682112
  82. Toledano, M.B., Delaunay, A., Monceau, L., and Tacnet, F. (2004). Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci. 29, 351-357. https://doi.org/10.1016/j.tibs.2004.05.005
  83. Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L., and Radi, R. (2007). Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell Biochem. 44, 83-113. https://doi.org/10.1007/978-1-4020-6051-9_5
  84. Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., and Morgan, B.A. (2003). Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896-30904. https://doi.org/10.1074/jbc.M303542200
  85. Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., and Morgan, B.A. (2004). A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15, 129-139. https://doi.org/10.1016/j.molcel.2004.06.021
  86. Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., and Hidalgo, E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880. https://doi.org/10.1073/pnas.0503251102
  87. Weids, A.J., and Grant, C.M. (2014). The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress. J. Cell Sci. 127, 1327-1335. https://doi.org/10.1242/jcs.144022
  88. Wong, C.M., Siu, K.L., and Jin, D.Y. (2004). Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279, 23207-23213. https://doi.org/10.1074/jbc.M402095200
  89. Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.S., Kang, S.W., Kim, K., and Rhee, S.G. (2003). Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656. https://doi.org/10.1126/science.1080273
  90. Wood, Z.A., Poole, L.B., Hantgan, R.R., and Karplus, P.A. (2002). Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41, 5493-5504. https://doi.org/10.1021/bi012173m
  91. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
  92. Wu, C.Y., Bird, A.J., Winge, D.R., and Eide, D.J. (2007). Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282, 2184-2195. https://doi.org/10.1074/jbc.M606639200
  93. Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036. https://doi.org/10.1074/jbc.M206626200

Cited by

  1. Multiple Functions and Regulation of Mammalian Peroxiredoxins vol.86, pp.1, 2017, https://doi.org/10.1146/annurev-biochem-060815-014431
  2. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0766-4
  3. Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
  4. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
  5. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation vol.124, pp.2, 2017, https://doi.org/10.1016/j.jbiosc.2017.03.009
  6. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes vol.29, pp.6, 2018, https://doi.org/10.1089/ars.2017.7449
  7. Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II vol.430, pp.5, 2016, https://doi.org/10.1016/j.jmb.2017.12.020
  8. Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence vol.135, pp.None, 2020, https://doi.org/10.1016/j.fgb.2019.103287
  9. Biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu(2+) action vol.92, pp.1, 2020, https://doi.org/10.15407/ubj92.01.103
  10. A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae vol.454, pp.1, 2016, https://doi.org/10.1007/s11104-020-04661-7
  11. Wine Yeast Peroxiredoxin TSA1 Plays a Role in Growth, Stress Response and Trehalose Metabolism in Biomass Propagation vol.8, pp.10, 2020, https://doi.org/10.3390/microorganisms8101537
  12. Thiol-based switching mechanisms of stress-sensing chaperones vol.402, pp.3, 2021, https://doi.org/10.1515/hsz-2020-0262