• 제목/요약/키워드: Thin Film Deposition

검색결과 2,988건 처리시간 0.029초

원자층 증착 기술을 이용한 TiOx 기반 TFT의 어닐링 효과 (Annealing Effect on TiOx Based Thin-Film Transistors with Atomic Layer Deposition)

  • 김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.474-478
    • /
    • 2017
  • We report on thin-film transistors based on $TiO_x$ pre-annealed by femtosecond laser pulses. A 30-nm thick $TiO_x$ active channel layer was initially deposited by an ALD system. The $TiO_x$ semiconducting films were annealed by irradiation with a femtosecond laser (power: $3W/cm^2$) for 5, 25, and 50s. Atomic force microscopy images revealed that the surface of a $TiO_x$ film without femtosecond laser pre-annealing was relatively rough, while after annealing with femtosecond laser pulses, the surface of the $TiO_x$ films became smooth. With increasing radiation time, the surrounding gas atmosphere could have a larger impact on the $TiO_x$ surface; meanwhile, the thin-film roughness decreased. Thin-film transistors with $TiO_x$ active channels pre-annealed at 50s exhibited good transfer characteristics and an on-to-off current ratio of ${\sim}10^3$.

Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가 (Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device)

  • 남상철;조원일;전은정;신영화;윤영수
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

TCP-CVD 장비를 활용한 광도파로용 Core-SiO2 증착 (Deposition of SiO2 Thin Film for the Core of Planar Light-Wave-Guide by Transformer Coupled Plasma Chemical-Vapor-Deposition)

  • 김창조;신백균
    • 한국진공학회지
    • /
    • 제19권3호
    • /
    • pp.230-235
    • /
    • 2010
  • 본 논문에서는 TCP-CVD를 이용하여 실리콘 산화막 형성에서 산화막의 특성에 영향을 미치는 전력, 가스 유량, 기판 바이어스 등의 공정조건에 따른 증착률과 굴절률을 제어하고자 한다. 그 결과 기판온도 300 [$^{\circ}C$], $SiH_4$ : $O_2$=50 : 100 [sccm], TCP power 1 [kW], 기판 바이어스 200 [W]를 인가한 조건에서 매우 우수한 균일도(<1 [%]) 및 증착률(0.28 [${\mu}m$/min])과 굴절률 (1.4610-1.4621)을 나타내는 안정된 $SiO_2$ 산화박막을 제조할 수 있었다.

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

화학증착법에 의한 $ZrO_2$ 박막의 제조 및 반응변수에 따른 증착특성 (The Fabrication of the $ZrO_2$ Thin Film by Chemical Vapor Deposition and the Effect of the Reaction Parameters on the Deposition Characteristics)

  • 최준후;김호기
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 1991
  • Zirconium dioxide(ZrO2) thin films have been deposited by chemical vapor deposition technique involving the application of gas mixture of ZrCl4, and H2O into silicon wafers. The relationships between the deposition rate and various reaction parameters such as the deposition time, the gas flow rate, the deposition temperature, and the composition of reactant gases were studied. The film was identified as nearly stoichiometric monoclinic ZrO2. The apparent activation energy is about 19Kcal/mole at surface chemical reaction controlled region. The deposition rate is mainly influenced by the H2O-forming reacting between CO2 and H2.

  • PDF

Fabrication of Organic-Inorganic Nanohybrid Semiconductors for Flexible Electronic Device

  • 한규석;정희찬;권덕현;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2011
  • We report a high-performance and air-stable flexible and invisible semiconductor which can be substitute for the n-type organic semiconductors. N-type organic-inorganic nanohybrid superlattices were developed for active semiconducting channel layers of thin film transistors at low temperature of $150^{\circ}C$ by using molecular layer deposition with atomic layer deposition. In these nanohybrid superlattices, self-assembled organic layers (SAOLs) offer structural flexibility, whereas ZnO inorganic layers provide the potential for semiconducting properties, and thermal and mechanical stability. The prepared SAOLs-ZnO nanohybrid thin films exhibited good flexibility, transparent in the visible range, and excellent field effect mobility (> 7cm2/$V{\cdot}s$) under low voltage operation (from -1 to 3V). The nanohybrid semiconductor is also compatible with pentacene in p-n junction diodes.

  • PDF

PZT/LSMO/Pt에 대한 펄스레이저 및 졸겔법에 의한 증착연구 (PZT/LSMO/Pt Thin-Film by Pulse Laser and Sol-Gel Deposition)

  • 최강룡;심인보;김철성
    • 한국자기학회지
    • /
    • 제15권1호
    • /
    • pp.21-24
    • /
    • 2005
  • 강자성, 초거대자기저항체인 $La_{0.67}Sr_{0.33}MnO_{3}$ 타겟을 이용하여 248nm의 파장을 갖는 KrF 엑시머 레이저를 사용한 PLD법으로 박막으 제작하고, 강유전체 물질인 $PbZr_{0.52}Ti_{0.48}O_{3}$ 물질을 spin coating 방법으로 제조하였다. Pt 기관(111)위에 125 mtorr의 산소분압으로 증착한 rhombohedral 구조를 갖는 LSMO 박막을 증착하고 그 위에 PZT 물질을 증착한 결과 LSMO, PZT en 물질 모두 단일상으로 [111]방향으로서의 성장하였음을 알 수 있었다. AFM(atomic force micrscope) data 및 SEM(scanning electron microscope) data를 바탕으로 매우 균질한 박막을 얻었음을 알 수 있었으며, 이때의 자기적 성질 및 전기적 성질은 각각 강자성적인 성질 및 강유전체적인 성향을 나타내었다. 이러한 결과를 가지고 박막증착에 있어서 서로간의 결정구조가 미치는 영향과 다른 경향에 대한 조절이 가능함을 알 수 있었다.

대향타겟식스퍼터링으로 제작된 ZnO 박막의 C-축 배향성 (C-axis Orientation of ZnO Thin Films Prepared by FTS Method)

  • 금민종;손인환;최형욱;최동진;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.685-687
    • /
    • 1999
  • We prepared ZnO thin film with Facing Targets Sputtering system that can deposit thin film in plasma-free situation and change the deposition condition in wide range. And prepared thin films c-axis orientation and grain size were analyzed by XRD(x-ray dffractometer). In the results, we suggest that FTS system is very suitable to preparing high quality ZnO thin film with good c-axis orientation.

  • PDF

Surface and Electrical Properties of 2 wt% Cr-doped Ni Ultrathin Film Electrode for MLCCs

  • Yim, Haena;Lee, JinJu;Choi, Ji-Won
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.224-227
    • /
    • 2015
  • In this study, 2 wt% Cr-doped Ni thin films were deposited using DC sputtering on a bare Si substrate using a 4 inch target at room temperature. In order to obtain ultrathin films from Cr-doped Ni thin films with high electrical properties and uniform surface, the micro-structure and electrical properties were investigated as a function of deposition time. For all deposition times, the Cr-doped Ni thin films had low average resistivity and small surface roughness. However, the resistivity of the Cr-doped Ni thin films at various ranges showed large differences for deposition times below 90 s. From the results, 120 s is considered as the appropriate deposition time for Cr-doped Ni thin films to obtain the lowest resistivity, a low surface roughness, and a small difference of resistivity. The Cr-doped Ni thin films are prospective materials for microdevices as ultrathin film electrodes.