• Title/Summary/Keyword: Thermostable xylanase B

Search Result 8, Processing Time 0.017 seconds

Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22

  • Lee, Yong-Eok;Lim, Pyung-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1014-1021
    • /
    • 2004
  • Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.

Cellulase-Free Thermostable Alkaline Xylanase from Thermophilic and Alkalophilic Bacillus sp. JB-99

  • Naik, G.R.;Johnvesly, B.;Virupakshi, S.;Patil, G.N.;Ramalingam
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.153-156
    • /
    • 2002
  • The characterization of a partially purified, cellulase-free, thermostable alkaline xylanase from thermoalkalophilic Bacillus sp. JB-99 was investigated. The xylanase production was the highest when birchwood xylan was added to a medium containing finely powdered rice bran, showing 4,826 IU$ml^-1$ of activity for 15 h of incubation. The partially purified xylanase exhibited an optimum temperature and pH at $70^C{\circ}$ and 10, respectively. The enzyme was stable at pH 5-11 at $50^C{\circ}$. The xylanase activity was strongly inhibited by $Hg^2+$, while dithiothreitol, cysteine, and ${\beta}$-mercaptoethanol enhanced the activity.

Attenuated Secretion of the Thermostable Xylanase xynB from Pichia pastoris Using Synthesized Sequences Optimized from the Preferred Codon Usage in Yeast

  • Huang, Yuankai;Chen, Yaosheng;Mo, Delin;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.316-325
    • /
    • 2012
  • Xylanase has been used extensively in the industrial and agricultural fields. However, the low-yield production of xylanase from native species cannot meet the increasing demand of the market. Therefore, improving the heterologous expression of xylanase through basic gene optimization may help to overcome the shortage. In this study, we synthesized a high-GC-content native sequence of the thermostable xylanase gene xynB from Streptomyces olivaceoviridis A1 and, also designed a slightly AT-biased sequence with codons completely optimized to be favorable to Pichia pastoris. The comparison of the sequences' expression efficiencies in P. pastoris X33 was determined through the detection of single-copy-number integrants, which were quantified using qPCR. Surprisingly, the high GC content did not appear to be detrimental to the heterologous expression of xynB in yeast, whereas the optimized sequence, with its extremely skewed codon usage, exhibited more abundant accumulation of synthesized recombinant proteins in the yeast cell, but an approximately 30% reduction of the secretion level, deduced from the enzymatic activity assay. In this study, we developed a more accurate method for comparing the expression levels of individual yeast transformants. Moreover, our results provide a practical example for further investigation of what constitutes a rational design strategy for a heterologously expressed and secreted protein.

Optimized Medium Improves Expression and Secretion of Extremely Thermostable Bacterial Xylanase, XynB, in Kluyveromyces lactis

  • Yin, Tie;Miao, Li-Li;Guan, Fei-Fei;Wang, Gui-Li;Peng, Qing;Li, Bing-Xue;Guan, Guo-Hua;Li, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1471-1480
    • /
    • 2010
  • An extremely thermostable xylanase gene, xynB, from the hyperthermophilic bacterium Thermotoga maritima MSB8 was successful expressed in Kluyveromyces lactis. The response surface methodology (RSM) was also applied to optimize the medium components for the production of XynB secreted by the recombinant K. lactis. The secretion level (102 mg/l) and enzyme activity (49 U/ml) of XynB in the optimized medium (yeast extract, lactose, and urea; YLU) were much higher than those (56 mg/l, 16 U/ml) in the original medium (yeast extract, lactose, and peptone; YLP). The secretory efficiency of mature XynB was also improved when using the YLU medium. When the mRNA levels of 13 characterized secretion-related genes in the K. lactis cultured in YLP and YLU were detected using a semiquantitative RT-PCR method, the unfolded protein response (UPR)-related genes, including ero1, hac1, and kar2, were found to be up-regulated in the K. lactis cultured in YLU. Therefore, the nutrient ingredients, especially the nitrogen source, were shown to have a significant influence on the XynB secretory efficiency of the host K. lactis.

Thermostable Sites and Catalytic Characterization of Xylanase XYNB of Aspergillus niger SCTCC 400264

  • Li, Xin Ran;Xu, Hui;Xie, Jie;Yi, Qiao Fu;Li, Wei;Qiao, Dai Rong;Cao, Yi;Cao, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • In order to improve the expression of heat-resistant xylanase XYNB from Aspergillus niger SCTCC 400264, XynB has been cloned into Pichia pastoris secretary vector pPIC9K. The XynB production of recombinant P. pastoris was four times that of E. coli, and the $V_{max}$ and specific activity of XynB reached $2,547.7{\mu}mol/mg$ and 4,757 U/mg, respectively. XynB still had 74% residual enzyme activity after 30 min of heat treatment at $80^{\circ}C$. From the van der Waals force analysis of XYNB (ACN89393 and AAS67299), there is one more oxygen radical in AAS67299 in their catalytic site, indicating that the local cavity is much more free, and it is more optimal for substrate binding, affinity reaction, and proton transfer, etc, and eventually increasing enzyme activity. The H-bonds analysis of XYNB indicated that there are two more H-bonds in the 33rd Ser of XYNB (AAS67299) than in the 33rd Ala(ACN89393 ), and two H-bonds between Ser70 and Asp67.

Reaction mechanism of translated xylanase from Thermatoga maritima MSB 8 and preparation of propyl-glycosides

  • Park, Jun-Seong;Kitaoka, Motomitsu;Hayashi, Kiyoshi;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.477-480
    • /
    • 2002
  • A thermostable xylanase from Thermotoga maritima (Xyn B) cleaves several pNP-glycosides of monosaccharides. We found that the initial product of the cleavage of pNP-xyloside (pNP-Xy1) was a disaccharide, not xylose, indicating that xylosyl unit of pNP-Xyl was transglycosylated to another pNP-Xyl. We determined that the disaccharide was xylobiose which has the linkage of the ${\beta}$ 1-4, and described the reaction mechanism of the Xyn B. Also, we produced the several pNP-glycosides and propyl-disaccharides from the transglycosylation of Xyn B with varial glycosides and/or 1-propanol. All reaction products were purified by column chromatography (Toyo-pearl HW-40C, 45 cm${\times}$2.5 cm or 45 cm ${\times}$ 2.5 cm${\times}$ 2). The isolated products were analyzed by means of 1D and 2D NMR.

  • PDF

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Improvement of the Thermostability of Xylanase from Thermobacillus composti through Site-Directed Mutagenesis

  • Tian, Yong-Sheng;Xu, Jing;Chen, Lei;Fu, Xiao-Yan;Peng, Ri-He;Yao, Quan-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1783-1789
    • /
    • 2017
  • Thermostability is an important property of xylanase because high temperature is required for its applications, such as wood pulp bleaching, baking, and animal feedstuff processing. In this study, XynB from Thermobacillus composti, a moderately thermophilic gram-negative bacterium, was modified via site-directed mutagenesis (based on its 3D structure) to obtain thermostable xylanase, and the properties of this enzyme were analyzed. Results revealed that the half-life of xylanase at $65^{\circ}C$ increased from 10 to 50 min after a disulfide bridge was introduced between the ${\alpha}$-helix and its adjacent ${\beta}$-sheet at S98 and N145. Further mutation at the side of A153E named XynB-CE in the C-terminal of this ${\alpha}$-helix enhanced the half-life of xylanase for 60 min at $65^{\circ}C$. Therefore, the mutant may be utilized for industrial applications.