Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22

  • Lee, Yong-Eok (Department of Biotechnology, Dongguk University) ;
  • Lim, Pyung-Ok (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2004.10.01

Abstract

Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.

Keywords

References

  1. Altschul, S. E, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
  2. Archana, A. and T. Satyanarayana. 2003. Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J. Microbiol. Biotechnol. 19: 53- 57.
  3. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257- 270.
  4. Balakrishnan, H., B. Kamal Kumar, M. Dutta-Choudhury, and M. V.Rele. 2002. Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10). J. Biochem. Mol. Biol. Biophys. 6: 325- 334.
  5. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326- 338.
  6. Belancic, A., J. Scarpa, A. Peirano, R. Diaz, J. Steiner, and J. Eyzaguirre. 1995. Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. J. Biotecnnol. 41: 71-79.
  7. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286- 290.
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Breccia, J. D., E Sineriz, M. D. Baigori, G. R. Castro, and R. Hatti-Kaul. 1998. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enz. Microb. Technol. 22: 42- 49.
  10. Christakopoulos, P, D. Kekos, B. J. Macris, M. Claeyssens, and M. K. Bhat. 1996. Purification and characterization of a major xylanase with cellulase and transferase activities from Fusarium oxysporum. Carbohydr. Res. 289: 91- 104.
  11. Clarke, J. H., J. E. Rixon, A. Ciruela, H. J. Gilbert, and G. P Hazlewood. 1997. Family-lO and family-ll xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps. Appl. Microbiol. Biotechnol. 48: 177- 183.
  12. Coughlan, M. P. and G. P. Hazelwood. 1993. $\beta$-l,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259- 289.
  13. Dekker, R. E H. and G. N. Richards. 1976. Hemicellulase: Their occurrence, purification, properties, and mode of action. Adv. Carbohydr. Chem. Biochem. 32: 277- 352.
  14. Grabski, A. C. and T. W. Jeffries. 1991. Production, purification and characterization of $\beta$-(l,4)-endoxylanase of Streptomyces roseiscleroticus. Appl. Environ. Microbiol. 57: 987- 992.
  15. Henrissat, B. and A. Bairach. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781- 788.
  16. Honda, H., T. Kudo, Y. Ikura, and K. Horikoshi. 1985. Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can. J. Microbiol. 31: 538- 542.
  17. Johnvesly, B., S. Virupakshi, G. N. Patil, Ramalingam, and G. R. Naik. 2002. Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB99. J. Microbiol. Biotechnol. 12: 153- 156.
  18. Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730.
  19. Kim, K. C., S.-S. Yoo, Y.-A Oh, and S.-J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJl producing cellulase and xylanase. J. Microbiol. Biotechnol. 13: 1- 8.
  20. Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase I of Aeromonas caviae MEl isolated from the intestine of a herbivorous insect tSamia cynth is pryeri). Biosci. Biotechnol. Biochem. 56: 1463-1464.
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  22. Lee, H.-J., D.-J. Shin, N. C. Cho, H.-O. Kim, S.-Y. Shin, S.-Y. Im, H. B. Lee, S.-B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387- 392.
  23. Lee, Y.-E. 2004. Isolation and characterization of thermostable xylanase-producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22- 28.
  24. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426- 428. https://doi.org/10.1021/ac60147a030
  25. Min, S. Y, B. G. Kim, C. Lee, H.-G. Hur, and J.-H. Ahn. 2002. Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890- 894.
  26. Okazaki, W., T. Akiba, K. Horikoshi, and R. Akahoshi. 1985. Purification and characterization of xylanases from alkalophilic thermophilic Bacillus spp. Agric. Biol. Chem. 49: 2033- 2039.
  27. Paice, M. G., R. Bourbonnais, M. Desrochers, L. Jurasek, and M. Yaguchi. 1986. A xylanase gene from Bacillus subtilis: Nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201- 206.
  28. Panbangred, W., A. Shinmyo, S. Kinoshita, and H. Okada. 1983. Purification and properties of endoxylanase produced by Bacillus pumilus. Agric. Biol. Chem. 47: 957- 963.
  29. Royer, J. C. and J. P. Nakas. 1991. Purification and characterization of two xylanases from Trichoderma longibrachiatum. Eur. J. Biochem. 202: 521- 529.
  30. Samain, E., P. Debeire, and J. P. Touzel. 1997. High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71- 78.
  31. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, U.S.A.
  32. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33- 64.
  33. Takami, H., K. Nakasone, Y. Takaki, G. Maeno, Y. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28: 4317-4331.
  34. Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335- 350.
  35. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-I ,4-xylanase in microorganisms: Function and applications. Microbiol. Rev. 52: 305- 317.
  36. Yang, R. C., C. R. MacKenzie, and S. A. Narang. 1988. Nucleotide sequence of a Bacillus circulans xylanase gene. Nucleic Acids Res. 16: 7187.