• Title/Summary/Keyword: Thermal gravimetric analysis

Search Result 154, Processing Time 0.026 seconds

Studies on the Preparation of Anion Exchange Membrane through Blending of the Poly(ethylenimine) and the Poly(vinyl alcohol) (폴리비닐알코올과 폴리에틸렌이민과의 혼합을 통한 음이온교환막의 제조 연구)

  • Kim, Sung-Pyo;Kim, Baek-Kyun;Lee, Hak-Min;Rhim, Ji-Won;Jeong, Sung-Il
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • This study focuses on the investigation of the anion exchange membrane through blending poly(ethylenimine) (PEI) and poly(vinyl alcohol) (PVA) varying the mixing ratio. To characterize the resulting membranes, the water content, contact angle, FT-IR, thermal gravimetric analysis, ion exchange capacity, ion conductivity and elastic modulus were measured. The PVA / PEI = 90 / 10 membrane showed the ion conductivity, $5.16{\times}10^{-2}S/cm$ and simultaneously the contact angle, $78.3^{\circ}$. According to TGA measurement, the resulting membranes seemed durable at room temperature. Through the modulus test, the mechanical properties increased with increasing PVA content and apparently the membranes looked very robust.

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier (연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구)

  • Park, Min Sung;Chang, Yu Woon;Jang, Yu Kyung;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.704-710
    • /
    • 2014
  • Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers (무전해 구리도금 된 흑연 섬유의 발열 특성)

  • Lee, Kyeong Min;Kim, Min-Ji;Lee, Sangmin;Yeo, Sang Young;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.264-269
    • /
    • 2017
  • To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

Purity Assessment of Organic Reference Materials with a Mass Balance Method: A Case Study of Endosulfan-II

  • Kim, Seung-Hyun;Lee, Joonhee;Ahn, Seonghee;Song, Young-Sin;Kim, Dong-Kyum;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.531-538
    • /
    • 2013
  • A mass balance method established in this laboratory was applied to determine the purity of an endosulfan-II pure substance. Gas chromatography-flame ionization detector (GC-FID) was used to measure organic impurities. Total of 10 structurally related organic impurities were detected by GC-FID in the material. Water content was determined to be 0.187% by Karl-Fischer (K-F) coulometry with an oven-drying method. Non-volatile residual impurities was not detected by Thermal gravimetric analysis (TGA) within the detection limit of 0.04% (0.7 ${\mu}g$ in absolute amount). Residual solvents within the substance were determined to be 0.007% in the Endosulfan-II pure substance by running GC-FID after dissolving it with two solvents. The purity of the endosulfan-II was finally assigned to be ($99.17{\pm}0.14$)%. Details of the mass balance method including interpretation and evaluating uncertainties of results from each individual methods and the finally assayed purity were also described.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Manufacture of Artificial stone using Wasts Stone and Powder Sludge (폐석 및 석분 슬러지를 활용한 인조석판재의 제조)

  • 손정수;김병규;김치권
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.4-11
    • /
    • 1995
  • The amounts of waste stone and stone powder sludge that occurred in the quarry and processing plant of s stone plates, have been increased with the development of stone industry. The manufactunng process of 따tificial s stone was studied to reduce the outlet of these wastes and utilIze them as raw materials for architecture, interior decoration and art work. In order to compare the properties of artiflcial stone with those of natural building-stone, the physi$\alpha$II properties of artificial stone such as specific gravity, absorption ratio, elastic wave velocity, compressive s strength, tensile strength, shore hardness, elasticity and Poission's ratio were measured. From the mesaured d data of physical properties, it was found that physical propertIes of artificial stone were controlled by homogeneous m mixing ratio of constituents, molding pressure, and amount of binder. Also, from the thermo-gravimetric analysis, it was found that artIfIcial stone manufactured had a good thermal stability up to $300^{\circ}C$. It was concluded that t the optimum conditions for manufacturing process of artificial stone were $200kg/\textrm{cm}^2$ of molding pressure, 12-15 w weight % of binder amounts.

  • PDF

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment (옥사디아졸 결합의 유기 발색단이 도입된 이차비선형 광학 이미드 고분자)

  • Do, Jung Yun;Kim, Bong Gun;Kwon, Ji-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid (PVC-g-PSSA가지형 공중합체와 헤테로폴리산을 이용한 수소이온 전도성 복합 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Yeon, Seung-Hyeon;Ahn, Ik-Sung;Park, Jin-Won
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.