DOI QR코드

DOI QR Code

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers

무전해 구리도금 된 흑연 섬유의 발열 특성

  • Lee, Kyeong Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Min-Ji (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Sangmin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yeo, Sang Young (Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이경민 (충남대학교 공과대학 응용화학공학과) ;
  • 김민지 (충남대학교 공과대학 응용화학공학과) ;
  • 이상민 (충남대학교 공과대학 응용화학공학과) ;
  • 여상영 (한국생산기술연구원) ;
  • 이영석 (충남대학교 공과대학 응용화학공학과)
  • Received : 2016.11.19
  • Accepted : 2017.01.05
  • Published : 2017.04.01

Abstract

To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

피치계 흑연섬유의 발열특성을 향상시키기 위하여 흑연섬유에 무전해법을 이용하여 구리 도금하였다. 구리 도금된 흑연섬유는 공기 분위기에서 열중량분석법을 실시하여 도금 시간에 따라 흑연섬유 표면에 구리가 도입된 양을 계산하였다. 또한, 전압에 따른 발열 온도는 섬유 가닥을 이용하여 열화상카메라로 관찰하였다. 무전해 도금의 시간이 증가함에 따라 도입된 구리의 양은 증가하였다. 20분 동안 무전해 도금한 섬유의 전기 전도도는 1594.3 S/cm이며, 발열 온도는 최대 $57.2^{\circ}C$로 가장 크게 나타났다. 이러한 결과는 도금시간이 증가함에 따라 전기 전도성이 우수한 구리가 흑연섬유 표면에 성장하고, 이에 따라 발열특성이 향상된 것으로 판단된다.

Keywords

References

  1. Fosbury, A., Wang, S., Pin, Y. F. and Chung, D. D. L., "The Interlaminar Interface of a Carbon Fiber Polymer-matrix Composite as a Resistance Geating Element," Composites: Part A, 34, 933-940(2003). https://doi.org/10.1016/S1359-835X(03)00208-2
  2. Jung, M. J., Park, M. S., Lee, S. and Lee, Y. S., "Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers," Appl. Chem. Eng., 27, 319-324(2016). https://doi.org/10.14478/ace.2016.1042
  3. Carrillo-Escalante, H. J., Alvarez-Castillo, A., Valadez-Gonzalez, A. and Herrera-Franco P. J., "Effect of Fiber-matrix Adhesion on the Fracture Behavior of a Carbon Fiber Reinforced Thermoplastic-modified Epoxy Matrix," Carbon Lett., 19, 47-56(2016). https://doi.org/10.5714/CL.2016.19.047
  4. Chu, K., Yun, D. J., Kim, D., Park, H. and Park, S. H., "Study of Electric Heating Effects on Carbon Nanotube Polymer Composites," Org. Electron., 15, 2734-2741(2014). https://doi.org/10.1016/j.orgel.2014.07.043
  5. Kim, M., Kong, K., Kim, N., Park, H. W., Park, O., Park, Y. B., Jung, M., Lee, S. H. and Kim, S. G., "Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-epoxy Composites," Compo. Res., 26, 72-78(2013). https://doi.org/10.7234/kscm.2013.26.1.72
  6. Jee, M. H., Lee, J. H., Lee, I. S. and Baik, D. G., "Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs," Text. Sci. Eng., 50, 108-114(2013). https://doi.org/10.12772/TSE.2013.50.108
  7. Pyo, D., Eom, S., Lee, Y. S. and Ryu, S., "Exothermic Characteristics of PAN-based Carbon Fiber According to High Temperature Treatment, " Korean Chem., Eng. Res., 49(2), 218-223(2011). https://doi.org/10.9713/kcer.2011.49.2.218
  8. Kim, B. J., Choi, W. K., Song, H. S., Park, J. K., Lee, J. Y. and Park, S.J., "Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers," Carbon Lett., 9, 105-107(2008). https://doi.org/10.5714/CL.2008.9.2.105
  9. Kim, B. J., Choi, W. K., Um, M. K. and Park, S. J., "Effects of Nickel Coating Thickness on Electric Properties of Nickel/carbon Hybrid Fibers," Surf. Coat. Technol., 205, 3416-3421(2011). https://doi.org/10.1016/j.surfcoat.2010.12.007
  10. Xu, C., Liu, G., Chen, H., Zhou, R. and Liu, Y., "Fabrication of Conductive Copper-coated Glass Fibers Through Electroless Plating Process," J. Mater. Sci.: Mater. Electron., 25, 2611-2617 (2014). https://doi.org/10.1007/s10854-014-1919-x
  11. Rathmell, A. R. and Wiley, B. J., "The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates," Adv. Mater., 23, 4798-4803(2011). https://doi.org/10.1002/adma.201102284
  12. Kim, M. J. and Kim, J. J, "Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices," Korean Chem. Eng. Res., 52(1), 26-39(2014). https://doi.org/10.9713/kcer.2014.52.1.26
  13. Kim, H. C. and Kim, J. J., "Through-silicon-via Filling Process Using Cu Electrodeposition," Korean Chem. Eng. Res., 54(6), 723-733(2016). https://doi.org/10.9713/kcer.2016.54.6.723
  14. Yousel, A., El-Halwany, M. M., Barakat, N. A. M., Al-Maghrabi, M. N. and Kim, H. Y., "$Cu_0$-doped $TiO_2$ Nanofibers as Potential Photocatalyst and Antimicrobial Agent," J. Ind. Eng. Chem., 26, 251-258(2015). https://doi.org/10.1016/j.jiec.2014.11.036
  15. Kim, D. Y., Yun, K. J. and Lee, Y. S., "Electromagnetic Interference Shielding Characteristics of Electroless Plated Carbon Nanotubes," Appl. Chem. Eng., 25, 268-273(2014). https://doi.org/10.14478/ace.2014.1021
  16. Choi, J. R., Rhee, K. Y. and Park, S. J., "Post-annealing Effects of Electroless Ni-B-plated MWCNTs on Thermal Conductivity of Epoxy-based Composites", J. Ind. Eng. Chem., 31, 47-50(2015). https://doi.org/10.1016/j.jiec.2015.06.029
  17. Yoon, H. S., Oh, J. H., Lee, H. K., Jeon, J. K. and Ryu, S. K., "Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal," Korean Chem., Eng. Res., 46(5), 863-867(2008).
  18. Oh, K. H., "Corrosion Protection for Electroless Cu Plated PET by Surface Confined Additives", Text. Sci. Eng., 38, 309-317(2001).
  19. Kim, Y. S., Shin, J., Kim, H. I., Cho, J. H., Seo, H. K., Kim, G. S. and Shin, H. S., "A Study of Copper Electroless Deposition on Tungsten Substrate, " Korean Chem., Eng. Res., 43(4), 495-502 (2005).
  20. Yamamoto, Y., Akiyama, H., Ooka, K., Yamamura, K., Oshikane, Y. and Zettsu, N., "Nanomoter-level Self-aggregation and Three-dimensional Growth of Copper Nanoparticles Under Dielectric Barrier Discharge at Atmospheric Pressure, " Curr. Appl. Phys., 12, S63-S68(2012).
  21. Chong, S. P., Ee, Y. C., Chen, Z. and Law, S. B., "Electroless Copper Seed Layer Deposition on Tantalum Nitride Barrier Film", Surf. Coat. Technol., 198, 287-290(2005). https://doi.org/10.1016/j.surfcoat.2004.10.086
  22. Ng, H. T., Li, S. F. Y., Chan, L., Loh, F. C. and Tan, K. L., "Sequential Observation of Electroless Copper Deposition via Noncontact Atomic Force Microscopy", J. Electrochem. Soc., 145, 3301-3307 (1998). https://doi.org/10.1149/1.1838800
  23. Xueping, G., Yating, W., Lei, L., Bin, S. and Wenbin, H., "Electroless Coper Plating on PET Fabrics Using Hypophosphite as Reducing Agent," Surf. Coat. Technol., 201, 7018-7023(2007). https://doi.org/10.1016/j.surfcoat.2007.01.006
  24. Li, J., Hayden, H. and Kohl, P. A., "The Influence of 2,2'-dipyridyl on Non-formaldehyde Electroless Copper Plating", Electrochem. Acta, 49, 1789-1795(2004). https://doi.org/10.1016/j.electacta.2003.12.010
  25. Touir, R., Larhzil, H., Ebntouhami, M., Cherkaoui, M. and Chassaing, E., "Electroless Deposition of Copper in Acidic Solution Using Hypophosphite Reducing Agent," J. Appl. Electrochem., 36, 69-75(2006). https://doi.org/10.1007/s10800-005-9025-7
  26. Li, J. and Koal, P. A., "The Acceleration of Nonformaldehyde Electroless Copper Plating, " J. Electrochem. Soc, 149, C631-C636 (2002). https://doi.org/10.1149/1.1517582
  27. Tian, F., Li, H. P., Zhao, N. Q. and He, C. N., "Catalyst Effects of Fabrication of Carbon Nanotubes Synthesized by Chemical Vapor Deposition," Mater. Chem. Phys., 115, 493-495(2009). https://doi.org/10.1016/j.matchemphys.2009.01.007
  28. Lu, W., Donepudi, V. S., Prakash, J., Liu, J. and Amine, K., "Electrochemical and Thermal Behavior of Copper Coated Type MAG-20 Natural Graphite", Electrochim. Acta, 47, 1601-1606(2002). https://doi.org/10.1016/S0013-4686(01)00883-0
  29. Chien, A. T., Cho, S., Joshi, Y. and Kumar, S., "Electrical Conductivity and Joule Heating of Polyacrylonitrile/carbon Nanotube Composite Fibers," Polymer, 585, 6895-6905(2014).
  30. Oya, N. and Johnson, D. J., "Longitudinal Compressive Behavior and Microstructure of PAN-based Carbon Fibers," Carbon, 39, 635-645(2001). https://doi.org/10.1016/S0008-6223(00)00147-0
  31. Choi, K. E., Park, C. H. and Seo, M.K., "Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat," Appl. Chem. Eng., 27, 210-216(2016). https://doi.org/10.14478/ace.2016.1018