DOI QR코드

DOI QR Code

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier

연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구

  • Park, Min Sung (Department of Environmental Engineering, Chosun University) ;
  • Chang, Yu Woon (Department of Environmental Engineering, Chosun University) ;
  • Jang, Yu Kyung (Department of Environmental Engineering, Chosun University) ;
  • Chun, Young Nam (Department of Environmental Engineering, Chosun University)
  • Received : 2014.02.18
  • Accepted : 2014.10.30
  • Published : 2014.10.30

Abstract

Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.

바이오매스는 지구온난화에 중요한 기여자인 이산화탄소와 같은 온실가스를 해결할 수 있는 대체에너지로 간주된다. 또한 바이오매스 에너지는 열화학적 전환 공정을 통해 다양한 형태로 전환된다. 본 연구에서는 목질계 바이오매스의 가스화를 위해 연속식 가스화기를 제작하였다. 목질계 바이오매스는 폐목재를 사용하였다. 이산화탄소 가스화 실험은 가스화 온도, 함수율 그리고 주입 이산화탄소 농도 변화에 따라 진행하였다. 실험결과는 가스화 온도가 증가함에 따라 생성가스 발생량이 증가함을 보였다. 경질타르는 중질타르의 열적 분해에 의해 증가되었고, 주사현미경 분석을 통해 촤 세공형성이 발달되는 것을 확인하였다. 일산화탄소 농도는 부다 반응에 의해 이산화탄소 주입농도 증가함에 따라 증가하였다. 변수별 실험에 의해, 최적 실험 조건에서 수소와 일산화탄소는 32.91%와 48.33%가 생성되었다.

Keywords

References

  1. Kim, S. J., "The study on the recovery of Bio-oil from palm kernel shell and construction woody waste via pyrolysis," Master thesis, The University of Seoul(2011).
  2. Dahlquist, E., "Technology for Converting Biomass to Useful Energy," 4th Ed, 1-3(2013).
  3. Lee, J. J., Yoon, S. W. and Lee, B. H., "Production of Fuels by Solvoysis from Cellulose," J. Kor. Soc. Environ. Eng., 26(12), 1312-1318(2004).
  4. Chun, Y. N., Kim, S. C. and Yoshikawa, K., "Pyrolysis gasification of dried sewage sludge in a combined screw and rotary Kiln gasifier," Appl. Energy, 88(4), 1105-1112 (2011). https://doi.org/10.1016/j.apenergy.2010.10.038
  5. Apaydin-Varol, E., Putun, E. and Putun, A. E., "Slow pyrolysis of pistachio shell," Fuel, 86(12-13), 1892-1899(2007). https://doi.org/10.1016/j.fuel.2006.11.041
  6. Pattiya, A., "Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor," Bioresour. Technol., 102(2), 1959-1967(2011). https://doi.org/10.1016/j.biortech.2010.08.117
  7. Brown, D., Gassner, M., Fuchino, T. and Marechal, F., "Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion system," Appl. Therm. Eng., 29(11-12), 2137-2152(2009). https://doi.org/10.1016/j.applthermaleng.2007.06.021
  8. Chun, Y. N., Dae, W. J. and Yoshikawa, K., "Pyrolysis and Gasification Characterization of a Sewage Sludge for High Quality Gas and Char Production," J. Mech. Sci. Technol., 27(1), 236-272(2013).
  9. Phuphuakrat, T., Namioka, T. and Yoshikawa, K., "Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption," Appl. Energy, 87(7), 2203-2211(2010). https://doi.org/10.1016/j.apenergy.2009.12.002
  10. Kajitani, S., Suzuki, N., Ashizawa, M. and Hara, S., "$CO_2$ gasification rate analysis of coal char in entrained flow coal gasifier," Fuel, 85(2), 163-169(2006) https://doi.org/10.1016/j.fuel.2005.07.024
  11. Good, J., Ventress, L., Knoef, H., Zielke, U., Hansen, P. L., van de Kamp, W., de Wild, P., Coda, B., van Passen, S., Kiel, J., Sjostrom, K., Liliedahl, T., Unger, Ch., Neeft, J. and Suomalainen, M., "Sampling and analysis of tar and particles in biomass producer gases," Technical Report CEN BT/TF, p. 143(2005).
  12. Yamazaki, T., Kozu, H., Yamagata, S., Murao, N., Ohta, S., Shiya, S. and Ohba, T., "Effect of superficial velocity on tar from downdraft gasification of biomass," Energy Fuel, 19(3), 1186-1191(2005). https://doi.org/10.1021/ef0497210
  13. Neeft, J. P. A., "Rationale for setup of inpinger train," Report CEN BT/TF 143(2005).
  14. Son, Y. I., Sato, M., Namioka, T. and Yosikawa, K., "A Study on Measurement of Light Tar Content in the Fuel Gas Produced in Small-Scale Gasification and Power Generation Systems for Solid Wastes," J. Environ. Eng., 4(1), 12-23(2009). https://doi.org/10.1299/jee.4.12
  15. Zhang B., Xiong, S., Xiao, B., Yu, D. and Jia, X., "Mechanism of wet sewage sludge pyrolysis in a tubular furnace," Int. J. Hydro. Energy, 36(1), 355-363(2011). https://doi.org/10.1016/j.ijhydene.2010.05.100
  16. Tippayawong, N. and Inthasan, P., "Investigation of Light Tar Cracking in a Gliding Arc Plasma System," Int. J. Chem. React. Eng., 8(1), 1-14(2010).
  17. Kentaro, U., "Modelling and Simulatioin of Biomass Gasification with High Temperature System in an Updraft Fixedbed Gasifier," Doctoral thesis, Tokyo Institute of Technology (2009).
  18. Yang, H., Yan, R., Chen, H., Lee, D. H. and Zheng, C., "Characteristics of hemicellulose, cellulose and lignin pyrolysis," Fuel, 86(12-13), 1781-1788(2007). https://doi.org/10.1016/j.fuel.2006.12.013
  19. Overend, R. P., Milne, T. A. and Mudge, L. K., "Fundamentals of thermochemical biomass conversion," Elsevier Applied Science Publishers, pp. 35-60(1985).