• Title/Summary/Keyword: Thermal expansion coefficients

Search Result 211, Processing Time 0.026 seconds

High resolution heterodyne interferometric technique with AOM for measuring the thermal expansion (음향광변조기를 이용한 고분해능의 헤테로다인 간섭식 열팽창 측정기술)

  • 최병일;이상현;김종철;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.530-536
    • /
    • 2002
  • The accurate measurements of thermal expansion coefficients is one of the most important techniques required not only in material science but also in industries. A high precision interferometric dilatometer, using acoustic optical modulator, has been constructed and its performance has been tested. The system consists of a double-path optical heterodyne interferometer and a radiant heating furnace. This provides highly accurate length measurement, and allows rapid heating and cooling method for the specimen. A three longitudinal mode frequency stabilized He-Ne laser, using the secondary beat frequency, is constructed. Its stability is found to be $5{\times}10^{-9}$. The uncertainty in the length measurement is estimated to be of nanometer order in the range between room temperature to 1100 K.

Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys (Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향)

  • Kim, Tae-Wan;Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.981-988
    • /
    • 2010
  • The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Fabrication and Characterization of Ytterbium Silicates for Environmental Barrier Coating Applications (환경차폐코팅용 이터븀 실리케이트의 제조와 물성평가)

  • Choi, Jae-Hyeong;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.331-339
    • /
    • 2021
  • Environmental barrier coatings(EBCs) are applied to the SiC/SiC ceramic matrix composites(CMCs) in order to protect CMCs from being corroded with water vapor by combustion gas in gas turbine engines. Ytterbium silicates, such as ytterbium monosilicate and ytterbium disilicate, are ones of the candidate materials for EBCs due to their excellent resistance to water vapor corrosion as well as thermal-expansion match with SiC. In this study, ytterbium silicates are fabricated with 2-step solid-state synthesis targeting ytterbium disilicate. After synthesizing ytterbium monosilicate, the mixtures of ytterbium monosilicate and SiO2 are heat-treated and densified by using pressureless sintering or hot pressing with a variety of heating conditions. The phase formation, thermal expansion, and oxidation behavior are examined with fabricated specimens. The final densified bodies are found to be composites between ytterbium monosilicate and ytterbium disilicate with different ratios, which results in 4.43 to 6.72×10-6/K range of coefficients of thermal expansion. The probability of these ytterbium silicates for EBC applications is also discussed.

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.

Effects of High Temperature and Radiation on the Properties of Thermal, mechanical and Shielding Ability of Neutron Shielding Materials (고온 및 방사선이 중성자 차폐재의 열적, 역학적 및 차폐능 특성에 미치는 영향)

  • Jo, Su-Haeng;Hong, Sun-Seok;Jeong, Myeong-Su;Do, Jae-Beom;Park, Hyeon-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.404-408
    • /
    • 1999
  • Effects of heating time and radiation under high temperature on the properties of thermal, mechanical and shielding ability of modified (KNS-101), hydrogenated bisphenol-A(KNS-201) type epoxy resin and phenol-novolac(KNS-301) type epoxy resin based neutron shielding materials that are used for shipping casks for radioactive material have been investigated. At early stages, the offset temperatures of KNS-101, KNS-201 and KNS-301 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-101 and KNS-201 decreased with heating time, but that of KNS-301 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials decreased with heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-101 and KNS-301 increased with heating time, but those of KNS-201 decreased with heating time. The shielding ability of neutron shielding materials slightly increased with the radiation dose, and shielding abilities of shielding materials of KNS-101 and KNS-201 were affected to a more extent than that of KNS-301 by radiation dose under high temperature.

  • PDF

Quality improvement on joints of electronic materials and its reliability by Fe-Ni alloy clad lead frame (Fe-Ni 합금 클래드 리드 프레임을 이용한 전자 재료 접합부의 품질향상과 그 신뢰성)

  • 신영의;최인수;안승호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.82-95
    • /
    • 1995
  • This paper discusses distribution of thermal stress, strain at near the joint and investigates the reliability of solder joints of electronic devices on a printed circuit board. As Electronic devices are composed of different materials, thermal stresses generate at near the interface, such as solder joints and interface between lC device and lead frame pad due to the differences of thermal expansion coefficients, As results of thermal stress, strain, micro crack often occurs thermal fatigue fracture at the interface of different materials, The initiation and propagation of micro crack depend on the environmental conditions, such as storage temperature and thermal cycling. Finally, this paper experimentally shows a way to suppress micro cracks by using Fe-Ni alloy clad lead frame, and investigates crack and thermal fatigue fracture of TSOP(Thin small outline package) type on printed circuit board.

  • PDF

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Construction and Application of Experimental Formula for Nonlinear Behavior of Ferroelectric Ceramics Switched by Electric Field at Room Temperature during Temperature Rise

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • A poled lead zirconate titanate (PZT) cube specimen that is switched by an electric field at room temperature is subject to temperature increase. Changes in polarization and thermal expansion coefficients are measured during temperature rise. The measured data are analyzed to obtain changes in pyroelectric coefficient and strain during temperature change. Empirical formulae are developed using linear or quadratic curve fitting to the data. The nonlinear behavior of the materials during temperature increase is predicted using the developed formulae. It is shown that the calculation results can be compared successfully with the measured values, which proves the accuracy and reliability of the developed formulae for the nonlinear behavior of the materials during temperature changes.

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory (고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Kang, Gil-Ho;Ha, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

Thermal Residual Stress Analysis of Fiber Reinforced Metal Laminate (섬유강화금속적층판(FRML)의 열응력 해석)

  • 김위대;양승희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.61-64
    • /
    • 2002
  • Fiber reinforced metal laminate(FRML) consists of alternations layers of metal and fiber reinforced composite. The difference in the coefficients of thermal expansion between metal and composite layer produces remarkable amount of thermal residual stresses between layers. Generally, FRML shows a tensile stress in metal layers, a compressive stress in composite layers after curing. In this study, the thermal residual stresses of several types of FRML are investigated to get the best combination of metal and composite which can reduce the thermal residual stresses. The residual stress level is compared with the strength of each layers to explain the fracture mechanism of FRML.

  • PDF