DOI QR코드

DOI QR Code

Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys

Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향

  • Kim, Tae-Wan (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Jo, Seung-Hoon (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 김태완 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 조승훈 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 고인용 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 도정만 (한국과학기술연구원) ;
  • 윤진국 (한국과학기술연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2010.05.20
  • Published : 2010.11.25

Abstract

The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. R. Sohn and T. Narita, Corrosion Science and Technology 31, 80 (2002).
  2. X. Li and C. Zhou, Corrosion Science and Technology 7, 233 (2008).
  3. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982). https://doi.org/10.1007/BF00656571
  4. F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 4, 113 (1995).
  5. Y. Okanda, I. Ohnaka, and S. Nenno, J. Jpa. Inst. Met. 52, 878 (1988). https://doi.org/10.2320/jinstmet1952.52.9_878
  6. Z.G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006). https://doi.org/10.1016/j.corsci.2005.01.012
  7. I. M. Wolff, L. E. Iorio, T. Rumpf, P. V. T. Scheers, and J. H. Potgieter, Materials Science and Engineering A241, 264 (1998).
  8. H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, Kor. J. Met. Mater. 48, 277 (2010). https://doi.org/10.3365/KJMM.2010.48.04.277
  9. P. D. Hodgson and R. Jackson, Met. Forum 4, 192 (1981).
  10. E. Godlewska, S. Szczepanik, R. Mania, J. Krawiarz, and S. Kozinski, Intermetallics 11, 307 (2003). https://doi.org/10.1016/S0966-9795(02)00247-9
  11. http://blog.naver.com/young92k/10046288917.