• 제목/요약/키워드: Thermal devices

검색결과 1,188건 처리시간 0.03초

완전 결핍 SOI MOSFET의 계면 트랩 밀도에 대한 급속 열처리 효과 (Effect of rapid thermal annealing on interface trap density by using subthreshold slope technique in the FD SOI MOSFETs)

  • Jihun Oh;Cho, Won-ju;Yang, Jong-Heon;Kiju Im;Baek, In-Bok;Ahn, Chang-Geun;Lee, Seongjae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.711-714
    • /
    • 2003
  • In this presentation, we investigated the abnormal subthreshold slope of the FD SOI MOSFETs upon the rapid thermal annealing. Based on subthreshold technique and C-V measurement, we deduced that the hump of the subthreshold slope comes from the abnormal D$_{it}$ distribution after RTA. The local kink in the interface trap density distribution by RTA drastically degrades the subthreshold characteristics and mini hump can be eliminated by S-PGA.A.

  • PDF

Effects of Thermal Treatments on Resonance Characteristics of FBAR Devices

  • Mai, Linh;Song, Hae-Il;Tuan, Le Minh;Su, Pham Van;Yoon, Gi-Wan
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.376-380
    • /
    • 2005
  • The paper presents some methods to improve characteristics of film bulk acoustic resonator (FBAR) devices. The FBAR devices were fabricated on Bragg reflectors. Thermal treatments were done by sintering and/or annealing processes. The measurement showed a considerable improvement of return loss (S$_{11}$) and quality factor (Q$_{s/p}$). These thermal techniques seem very promising for enhancing FBAR resonance performance.

  • PDF

소형의 평판형 냉각장치 개발 (Development of Small Flat Plate Type Cooling Device)

  • 문석환;황건;강승열;조경익
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.614-619
    • /
    • 2010
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of a slimness of the devices, so it is not easy to find the optimal thermal management solution for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint of the applications. In the present study, the silicon flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. The normal isothermal characteristics created by vapor-liquid phase change was confirmed through the experimental study. The cooling device with 70 mm of total length showed 6.8 W of the heat transfer rate within the range of $4{\sim}5^{\circ}C/W$ of thermal resistance. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of the silicon and glass cooling device.

Efficient Thermal Annealing for FBAR Devices

  • Song Hae-il;Mai Linh;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.167-171
    • /
    • 2005
  • In this paper, the resonance characteristics of SMR-type FBAR devices annealed by three different annealing methods are investigated and compared. The resonance characteristics could be effectively improved by the proposed efficient annealing method which optimizes the annealing conditions. It seems very useful for improving the performance of the SMR-type FBAR devices as a cost-effective way.

이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구 (A Study on Reliability of Solder Joint in Different Electronic Materials)

  • 신영의;김경섭;김형호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

일체형 스마트 LED Driver ICs 패키지의 열 특성 분석 (Study on Thermal Characteristics of Smart LED Driver ICs Package)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.79-83
    • /
    • 2016
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If thhe distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화 (The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment)

  • 지현진;최재완;김규태
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

Temperature Effect on the Interface Trap in Silicon Nanowire Pseudo-MOSFETs

  • 남인철;김대원;허근;;황종승;황성우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.487-487
    • /
    • 2013
  • According to shrinkage of transistor, interface traps have been recognized as a major factor which limits the process development in manufacturing industry. The traps occur through spontaneous generation process, and spread into the forbidden band. There is a large change of current though a few traps are existed at the Si-SiO2 interface. Moreover, the increased temperature largely affects to the leakage current due to the interface trap. For this reason, we made an effort to find out the relationship between temperature and interface trap. The subthreshold swing (SS) was investigated to confirm the correlation. The simulated results show that the sphere of influence of trap is enlarged according to increase in temperature. To investigate the relationship between thermal energy and surface potential, we extracted the average surface potential and thermal energy (kT) according to the temperature. Despite an error rate of 6.5%, change rates of both thermal energy and average surface potential resemble each other in many ways. This allows that SS is affected by the trap within the range of the thermal energy from the surface energy.

  • PDF

PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성 (Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts)

  • 오복현;마충일;이상진
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.