• Title/Summary/Keyword: Thermal batteries

Search Result 211, Processing Time 0.028 seconds

Lab-scale experimental setup to evaluate the performance of band driers (통기밴드식 건조기의 성능 평가 실험 장치)

  • Seongmin, Park;Sang Hyun, Oh;Sung Il, Kim;Wonjung, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.36-41
    • /
    • 2022
  • Drying process is involved in the production of various products including food, textiles, paper, pharmaceuticals, and batteries. Phase change of liquid to vapor generally requires enormous thermal energy, so in order to save energy, it is advantageous to develop an appropriate drier and use it under appropriate operating conditions, depending on the characteristics of materials. However, due to the complex, multiscale heat and mass transfer occurring during drying processes, predictions of appropriate drying conditions before actual operation are not easily achieved, leading to challenges in designing driers. Here, we developed a lab-scale experimental setup to evaluate the performance of band dries. The experimental setup was used to measure the moisture content and temperature change in the materials being dried in a belt dryer. Experimental results obtained using our lab-scale setup allow us to predict the performance of a full-scale band drier, thus suggesting a practical framework for predicting the drying process of various materials and developing band driers.

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

Electrochemical Characteristics of $V_2O_5$ based All Solid State Thin Film Microbattery by Ex-situ Sputtering Method (Ex-situ 스퍼터링법에 의한 $V_2O_5$ 전 고상 박막전지의 전기화학적 특성)

  • Lim Y.C.;Nam S.C.;Jeon E.J.;Yoon Y.S.;Cho W.I.;Cho B.W.;Chun H.S.;Yun K.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.44-48
    • /
    • 2000
  • Amorphous $V_2O_5$ cathode thin films were prepared by DC-magnetron sputtering at room temperature and the thin film rechargeable lithium batteries were fabricated with the configuration of $V_2O_5/LIPON/Li$ using sequential ex-situ thin film deposition techniques. The electrochemical characteristics of $V_2O_5$ cathode materials Prepared at 80/20 of $Ar/O_2$ ratio showed high capacity and cycling behaviors by half cell test. LIPON solid electrolytes films were prepared by RF-magnetron sputtering using the self-made $Li_3PO_4$ target in pure $N_2$ atmosphere, and it was very stable for lithium contact in the range of 1.2-4.0 V vs. Li. Metallic lithium were deposited on LIPON electrolyte by thermal evaporation methode in dry room. Vanadium oxide based full cell system showed the initial discharge capacity of $150{\mu}A/cm^2{\mu}m$ in the range of $1.2\~3.5V$.

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery (리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성)

  • Eun Bi Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries (열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성)

  • Dong Ki Kim;Chaehun Lim;Seongjae Myeong;Naeun Ha;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.140-147
    • /
    • 2024
  • In order to increase the utilization of biomass, an electrochemical performance was considered after manufacturing a carbon anode material (SV-C) for a Setaria viridis-based lithium ion secondary battery through a heat treatment process. When the heat treatment temperature of the Setaria viridis is as low as 750 ℃, the capacitance (1003.3 mAh/g, at 0.1 C) is high due to the negative (-) charge of oxygen present on the surface attracting lithium, along with the low crystallinity and high specific surface area (126 m2/g), but the capacity retention rate is believed to be as low as 61.0% (at 500 cycles and 1 C). In addition, it was confirmed that when the heat treatment temperature increased to 1150 ℃, the carbon layer was condensed to be excellent in arrangement, and the structural defects were reduced, resulting in a significant reduction in the specific surface area (32 m2/g) of the pores. Furthermore, when the surface defects of the anode material are reduced and the crystallinity is increased, the capacity retention rate is as high as 89.7% (at 500 cycles and 1 C), but the degree of defects is small, the active point is reduced, and the specific capacity is considered to be very low at 471.7 mAh/g. In the scope of this study, it was found that in the case of the Setaria viridis-based carbon anode material manufactured according to the heat treatment temperature, the surface oxygen content and crystallinity have higher reliability on the electrochemical properties of the anode material than the specific surface area.

Experimental and Numerical Analysis of Microvia Reliability for SLP (Substrate Like PCB) (실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • Recently, market demands of miniaturization, high interconnection density, and fine pitch of PCBs continuously keep increasing. Therefore, SLP (substrate like PCB) technology using a modified semi additive process (MSAP) has attracted great attention. In particular, SLP technology is essential for the development of high-capacity batteries and 5G technology for smartphones. In this study, the reliability of the microvia of hybrid SLP, which is made of conventional HDI (high density interconnect) and MSAP technologies, was investigated by experimental and numerical analysis. Through thermal cycling reliability test using IST (interconnect stress test) and finite element numerical analysis, the effects of various parameters such as prepreg properties, thickness, number of layers, microvia size, and misalignment on microvia reliability were investigated for optimal design of SLP. As thermal expansion coefficient (CTE) of prepreg decreased, the reliability of microvia increased. The thinner the prepreg thickness, the higher the reliability. Increasing the size of the microvia hole and the pad will alleviate stress and improve reliability. On the other hand, as the number of prepreg layers increased, the reliability of microvia decreased. Also, the larger the misalignment, the lower the reliability. In particular, among these parameters, CTE of prepreg material has the greatest impact on the microvia reliability. The results of numerical stress analysis were in good agreement with the experimental results. As the stress of the microvia decreased, the reliability of the microvia increased. These experimental and numerical results will provide a useful guideline for design and fabrication of SLP substrate.