DOI QR코드

DOI QR Code

Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery

리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성

  • Eun Bi, Kim (Department of Chemical Engineering, Chungbuk National University) ;
  • Jong Dae, Lee (Department of Chemical Engineering, Chungbuk National University)
  • 김은비 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2022.07.06
  • Accepted : 2022.08.08
  • Published : 2023.02.01

Abstract

In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.

본 연구에서는 리튬 이온 배터리 용 음극활물질인 실리콘의 사이클 안정성 및 율속 특성을 개선하기 위해 도파민이 코팅된 실리콘/실리콘카바이드/카본(Si/SiC/C) 복합소재의 전기화학적 특성을 조사하였다. Stöber 법에 CTAB을 추가하여 CTAB/SiO2를 합성한 후 열 흡수제로써 NaCl을 첨가한 마그네슘 열 환원법을 통해 Si/SiC 복합소재를 제조하였으며, 도파민의 중합반응을 통해 탄소코팅을 하여 Si/SiC/C 음극소재를 합성하였다. 제조된 Si/SiC/C 음극소재의 물리적 특성 분석을 위해 SEM, TEM, XRD와 BET를 사용하였으며, 1 M LiPF6 (EC : DEC = 1 : 1 vol%) 전해액에서 리튬 이온 배터리의 사이클 안정성, 율속 특성, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 1-Si/SiC는 100사이클, 0.1 C에서 633 mAh/g의 방전용량을 나타냈으며, 도파민이 코팅된 1-Si/SiC/C는 877 mAh/g으로 사이클 안정성이 향상된 것을 확인할 수 있었다. 또한 5C에서 576 mAh/g의 높은 용량과 0.1 C/0.1 C 일 때 99.9%의 용량 회복 성능을 나타내었다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 (Tech-Bridge활용 상용화 기술개발사업)의 지원에 의한 연구임(RS-2022-00140827).

References

  1. Zhou, Y., Yang, Y., Hou, G., Yi, D., Zhou, B., Chen, S., Lam, T. D., Yuan, F., Golberg, D. and Wang, X., "Stress-relieving Defects Enable Ultra-stable Silicon Anode for Li-ion Storage," Nano Energy, 70, 104568(2020).
  2. Chen, S., Gordin, M. L., Yi, R., Howlett, G., Sohn, H. and Wang, D., "Silicon Core-hollow Carbon Shell Nanocomposites with Tunable Buffer Voids for High Capacity Anodes of Lithium-ion Batteries," Phys. Chem. Chem. Phys., 14, 12741-12745(2012). https://doi.org/10.1039/c2cp42231j
  3. Zhang, H., Li, X., Guo, H., Wang, Z. and Zhou, Y., "Hollow Si/C Composite as Anode Material for High Performance Lithiumion Battery," Powder Technol., 299, 178-184(2016). https://doi.org/10.1016/j.powtec.2016.05.002
  4. Profatilova, I. A., Stock, C., Schmitz, A., Passerini, S. and Winter, M., "Enhanced Thermal Stability of a Lithiated Nano-silicon Electrode by Fluoroethylene Carbonate and Vinylene Carbonate," J. Power Sources, 222(15), 140-149(2013). https://doi.org/10.1016/j.jpowsour.2012.08.066
  5. Ren, Y., Zhou, X., Tang, J., Ding, J., Chen, S., Zhang, J., Hu, T., Yang, X. S., Wang, X. and Yang, J., "Boron-Doped Spherical Hollow-Porous Silicon Local Lattice Expansion toward a High-Performance Lithium-Ion-Battery Anode," Inorg. Chem., 58(7), 4592-4599(2019). https://doi.org/10.1021/acs.inorgchem.9b00158
  6. Wu, X. R., Yu, C. H. and Li, C. C., "Carbon-encapsulated Gigaporous Microsphere as Potential Si Anode-active Material for Lithium-ion Batteries," Carbon, 160(30), 255-264(2020). https://doi.org/10.1016/j.carbon.2020.01.021
  7. Jia, H., Zheng, J., Song, J., Luo, L., Yi, R., Estevez, L., Zhao, W., Patel, R., Li, X. and Zhang, J. G., "A Novel Approach to Synthesize Micrometer-sized Porous Silicon as a High Performance Anode for Lithium-ion Batteries," Nano Energy, 50, 589-597(2018). https://doi.org/10.1016/j.nanoen.2018.05.048
  8. Wang, W., Wang, Y., Gu, L., Lu, R., Qian, H., Peng, X. and Sha, J., "SiC@Si Coreeshell Nanowires on Carbon Paper as a Hybrid Anode for Lithium-ion Batteries," J. Power Sources, 293(20), 492-497(2015). https://doi.org/10.1016/j.jpowsour.2015.05.103
  9. Yu, C., Chen, X., Xiao, Z., Lei, C., Zhang, C., Lin, X., Shen, B., Zhang, R. and Wei, F., "Silicon Carbide as a Protective Layer to Stabilize Si-Based Anodes by Inhibiting Chemical Reactions," Nano Lett., 19(8), 5124-5132(2019). https://doi.org/10.1021/acs.nanolett.9b01492
  10. She, Z., Gad, M., Ma, Z., Li, Y. and Pope, M. A., "Enhanced Cycle Stability of Crumpled Graphene-Encapsulated Silicon Anodes via Polydopamine Sealing," ACS Omega, 6(18), 12293-12305(2021). https://doi.org/10.1021/acsomega.1c01227
  11. Fang, S., Shen, L., Tong, Z., Zheng, H., Zhang, F. and Zhang, X., "Si Nanoparticles Encapsulated in Elastic Hollow Carbon Fibres for Li-ion Battery Anodes with High Structural Stability," Nanoscale, 7, 7409(2015).
  12. Khanna, L., Lai, Y. and Dasog, M., "Systematic Evaluation of Inorganic Salts as a Heat Sink for the Magnesiothermic Reduction of Silica," Can. J. Chem., 96(11), 965-968(2018). https://doi.org/10.1139/cjc-2018-0165
  13. An, W., Fu, J., Su, J., Wang, L., Peng, X., Wu, K., Chen, Q., Bi, Y., Gao, B. and Zhang, X., "Mesoporous Hollow Nanospheres Consisting of Carbon Coated Silica Nanoparticles for Robust Lithium-ion Battery Anodes," J. Power Sources, 345(31), 227-236 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.125
  14. Liebscher, J., Mrowczynski, R., Scheidt, H. A., Filip, C., Hadade, N. D., Turcu, R., Bende, A. and Beck, S., "Structure of Polydopamine: A Never-Ending Story?," Langmuir, 29(33), 10539-10548 (2013). https://doi.org/10.1021/la4020288
  15. d'Ischia, M., Napolitano, A., Ball, V., Chen, C. T. and Buehler, M. J., "Polydopamine and Eumelanin: From Structure-Property Relationships to a Unified Tailoring Strategy," Acc. Chem. Res., 47(12), 3541-3550(2014). https://doi.org/10.1021/ar500273y
  16. Vecchia, N. F. D., Avolio, R., Alfe, M., Errico, M. E., Napolitano, A. and d'Ischia, M., "Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point," Adv. Funct. Mater., 23(10), 1331-1340(2013). https://doi.org/10.1002/adfm.201202127
  17. Fan, Z., Ding, B., Guo, H., Shi, M., Zhang, Y., Dong, S., Zhang, T., Dou, H. and Zhang, X., "Dual Dopamine Derived Polydopamine Coated N-Doped Porous Carbon Spheres as a Sulfur Host for High-Performance Lithium-Sulfur Batteries," Chem.-Eur. J., 25(45), 10710-10717(2019). https://doi.org/10.1002/chem.201901591
  18. Mishraa, A. K., Belgamwara, R., Janab, R., Dattab, A. and Polshettiwar, V., "Defects in Nanosilica Catalytically Convert CO2 to Methane Without Any Metal and Ligand," PNAS, 117(12), 6383-6390(2020). https://doi.org/10.1073/pnas.1917237117
  19. Lee, J. I. and Park, S. J., "High-performance Porous Silicon Monoxide Anodes Synthesized via Metal-assisted Chemical Etching," Nano Energy, 2(1), 146-152(2013). https://doi.org/10.1016/j.nanoen.2012.08.009
  20. Liu, R., Shen, C., Dong, Y., Qin, J., Wang, Q., Iocozzia, J., Zhao, S., Yuan, K., Han, C., Lie, B. and Lin, Z., "Sandwich-like CNTs/Si/C Nanotubes as High Performance Anode Materials for Lithium-ion Batteries," J. Mater. Chem. A., 6, 14797(2018).
  21. Gao, P., Tang, H., Xing, A. and Bao, Z., "Porous Silicon from the Magnesiothermic Reaction as a High-performance Anode Material for Lithium Ion Battery Applications," Electrochim. Acta, 228, 545-552(2017). https://doi.org/10.1016/j.electacta.2017.01.119