• 제목/요약/키워드: Thermal and electric energy

검색결과 547건 처리시간 0.033초

전기자동차용 배터리 및 열관리시스템 기술동향 (Thermal management system for electric vehicle batteries and technology trends)

  • 서현상;조행묵
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.57-61
    • /
    • 2014
  • 자동차산업이 해결해야 할 과제로서 석유에너지의 소비증가와, $CO_2$ 배출에의한 지구온난화, 배기가스 배출에 의한 도시부 대기오염 등에 대한 대처가 필요한 시점이다. 이들의 해법으로 시장에서 높은 평가를 받고 있는 전기자동차의 필요성이 대두되고 있다. 본 연구에서는 전기자동차 모터, 배터 리 및 구동모터를 포함한 고전압 핵심부품들의 효율적인 열관리 기술, 배터리 및 구동모터의 열관리 기술 및 개발동향을 알아보고자 한다.

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

TM발전변환기 개발을 위한 저온도차 스털링엔진(MM-7)의 성능실측 연구 (An Experimental Study on LTD Stirling Engine (MM-7) for the Development of TM Electric Conversion System)

  • 김영민;콴첸;천원기
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.9-14
    • /
    • 2016
  • 본 연구는 주위의 온도보다 약 $20{\sim}30^{\circ}C$ 밖에 높지 않은 저온폐열을 활용하기 위한 TM(Thermal to Mechanical) 발전변환기의 개발을 위하여 저온도차 스털링엔진의 하나인 MM-7에 대한 성능실측 연구를 수행하였다. 스털링엔진의 흡열부와 방열부의 온도차에 대한 토크 및 분당회전수를 측정하고 이를 바탕으로 MM-7 엔진의 출력을 산출하였으며, 이를 통하여 효율적인 TM발전변환기의 개발 방안을 모색하였다.

Medium Voltage HTS Cable Thermal Simulation using PSCAD/EMTDC

  • Jung, Chaekyun;Kang, Yeonwoog;Kang, Jiwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.145-150
    • /
    • 2015
  • This paper described the medium voltage high temperature superconducting cable thermal simulation and its application. New simulation method for HTS cable modeling using PSCAD/EMTDC is introduced in this paper. The developed simulation method consists of electrical model part and thermal model part. In electrical model part, power loss and thermal capacitance can be calculated in each layer, then the temperature of each layer can be calculated by power loss and thermal capacitance in thermal model part. This paper also analyzes the electrical and thermal characteristic in the case of normal operating condition and transient including single line to ground fault and line to line ground fault using new simulation method.

리튬 이온 전지 팩의 열적 거동 모델링 (Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack)

  • 이재신
    • 에너지공학
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 전기자동차(Electric Vehicle, EV)와 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)의 성능과 수명주기 비용은 배터리 팩에 좌우된다. 팩 내부의 비정상적인 온도분포는 전지간의 전기적인 불균형을 가져오고 팩의 성능을 떨어뜨리기 때문에 팩 내부의 온도 균일성은 EV와 HEV용 전지 팩의 최적 성능을 위한 중요한 요소이다. 본 연구에서는 EV와 HEV용 리튬이온전지 팩의 열적 거동을 예측하기 위해 삼차원 전산 모사를 하였다. 전지 팩의 열전도도는 각종 구성요소의 열전도 저항이 직렬과 병렬로 연결되어 있는 것으로 간주하였다. 셀에서의 열 발생량은 전지내부의 전기화학적 반응에 의한 반응열과 전류의 흐름과 내부저항에 의한 열을 고려하여 계산 하였다.

축열식 지열원 히트펌프 시스템의 냉방기간 실증운전 결과 및 운영비용 분석 (Empirical Results and Operational Cost Analysis of Geothermal Heat Pump System using Thermal Energy Storage in Cooling Season)

  • 김득원;이동원;허재혁;김민휘
    • 설비공학논문집
    • /
    • 제30권4호
    • /
    • pp.167-174
    • /
    • 2018
  • The geothermal heat pump systems were installed for heating and cooling of public buildings in Jincheon Eco-friendly Energy town. The heat pump system was operated at night to save on operational costs, and the cold heat was stored in thermal energy storage (TES). In this study, the performance of geothermal heat pump systems with the TES during the summer season was analyzed, and the operational costs with and without the TES were compared. The electric chiller model was used to simulate a heat pump applied without the TES system. Electric rates of each system were measured to calculate operational costs. When the TES is used in the air conditioning system, the electric load (30.4 MWh) calculated in the daytime can move to off-peak load time, and the operational cost is reduced by 36~54%.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석 (DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition)

  • 권순종;김수연;황진;우상균;김봉석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구 (Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities)

  • 이재준;김대훈;이강휘;임재규;이승태
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

발전용 소재 단조기술 및 국내 단조업계 동향 (Recent Trend to the Forging Technology of Power Plant Components and Status of Forging Company)

  • 김정태;장희상;김동권;김영득;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.38-41
    • /
    • 2007
  • The increase of $CO_2$ emission by increasing of fossil fuel usage has been understood a major cause of global warming. The supply of electric energy is heavily dependent on the massive thermal power and nuclear power plant before developing the renewable energy to supply the electric energy stably at a low price. The large and sound forged components of pressure vessel, turbine and generator are widely used in power plant such as wind power, hydroelectric power generation, nuclear power and thermal power plant. This paper is discussed the trend of manufacturing technology for pressure vessel and turbine to satisfy the required condition of utility company. It is also introduced a strategy of forging industry to cope with carbon tax.

  • PDF